Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-25T19:14:46.687Z Has data issue: false hasContentIssue false

The migration and occupation of Li+ and Na+ in illite and montmorillonite during the heating process

Published online by Cambridge University Press:  25 April 2024

Zhenxiao Wu
Affiliation:
School of Earth Science and Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, China
Shangying Li
Affiliation:
School of Earth Science and Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, China School of Land Engineering, Chang'an University, No. 126 Yanta Road, Xi'an 710054, China
Yang Wang
Affiliation:
School of Earth Science and Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, China
Hongfei Cheng*
Affiliation:
School of Earth Science and Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, China
*
Corresponding author: Hongfei Cheng; Email: h.cheng@chd.edu.cn

Abstract

The impact of temperature on the migration of cations within layers of clay minerals is of profound significance for the design and practical application of materials derived from clay minerals. This study focuses on Li+ and Na+ as representative cations, together with illite (Ilt) and montmorillonite (Mnt) as representative clay minerals. The study investigates the behaviour of cation migration and occupation within clay minerals across varying temperatures. A series of samples were prepared meticulously by immersing illite and montmorillonite in Li+ and Na+ solutions, subsequently subjecting them to different temperatures (unheated, 100, 150, 200, 250 and 300°C) for 24 h. Through the use of techniques such as X-ray diffraction (XRD), cation exchange capacity (CEC), Fourier-transform infrared spectroscopy (FTIR), magic angle rotating solid nuclear magnetic resonance spectroscopy (MAS NMR), and X-ray photoelectron spectroscopy (XPS), the study discerns structural transformations in illite and montmorillonite, and tracks the migration and occupation of Li+ and Na+. The findings reveal that following heating, Na+ and Li+ do not infiltrate the lattice of illite. For montmorillonite, Na+ also does not migrate into the montmorillonite lattice, however, in contrast, Li+ does exhibit migration into this lattice. Notably, the migration and occupation of interlayer Li+ within montmorillonite exhibit discernible temperature dependence. Specifically, upon reaching 150°C, interlayer Li+ migrate to ditrigonal cavities within the tetrahedral layers. As the temperature elevates to 200°C, Li+ further permeate vacant octahedral sites through the ditrigonal cavities, culminating in the formation of a localised trioctahedral structure.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Guest Editor: Qingze Chen

This paper is part of a thematic set on Nanominerals and mineral nanoparticles

References

Ai, Q., Yang, Z.J., Zeng, X.Q., Zheng, Y.L. and Hu, P.Y. (2013) Study on the FTIR spectra of OH in olivines from Mengyin Kimberlite. Spectroscopy and Spectral Analysis, 33, 23742378 [in Chinese with English abstract].Google Scholar
Alba, M.D., Alvero, R., Becerro, A.I., Castro, M.A. and Trillo, J.M. (1998) Chemical behavior of lithium ions in reexpanded Li-montmorillonites. The Journal of Physical Chemistry B, 102, 22072213.CrossRefGoogle Scholar
Alvero, R., Alba, M.D., Castro, M.A. and Trillo, J.M. (1994) Reversible migration of lithium in montmorillonites. Russian Journal of Physical Chemistry, 98, 78487853.Google Scholar
Beaufort, D., Berger, G., Lacharpagne, J.C. and Meunier, A. (2001) An experimental alteration of montmorillonite to a di+trioctahedral smectite assemblage at 100 and 200°C. Clay Minerals, 36, 211225.CrossRefGoogle Scholar
Bodart, P.R., Delmotte, L., Rigolet, S., Brendlé, J. and Gougeon, R.D. (2018) 7Li{19F} TEDOR NMR to observe the lithium migration in heated montmorillonite. Applied Clay Science, 157, 204211.CrossRefGoogle Scholar
Cao, Z., Wang, Q. and Cheng, H. (2021) Recent advances in kaolinite-based material for photocatalysts. Chinese Chemical Letters, 32, 26172628.CrossRefGoogle Scholar
Chen, T. and Wang, H.J. (2007) Microstructure characteristics of illite from Chuanlinggou Formation of Changcheng System in Jixian County, Tianjin City. Science in China (Series D: Earth Sciences), 50, 14521458.CrossRefGoogle Scholar
Cheng, H.F., Yang, J., Liu, Q.F., Zhang, J.S. and Frost, R.L. (2010) A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite—A mid-infrared and near-infrared study. Spectrochimica Acta, A77, 856861.CrossRefGoogle Scholar
Clementz, D.M. and Mortland, M.M. (1974) Properties of reduced charge montmorillonite: Tetra-alkylammonium ion exchange forms. Clays and Clay Minerals, 22, 223229.CrossRefGoogle Scholar
Connell, J.G., Fuchs, T., Hartmann, H., Krauskopf, T., Zhu, Y.S., Sann, J., Garcia-Mendez, R., Sakamoto, J., Tepavcevic, S. and Janek, Jr. (2020) Kinetic versus thermodynamic stability of LLZO in contact with lithium metal. Chemistry of Materials, 32, 1020710215.CrossRefGoogle Scholar
Ebina, T., Iwasaki, T. and Jee, A.C. (1999) XPS and DFT study on the migration of lithium in montmorillonite. Clay science, 10, 569581.Google Scholar
Farmer, V.C. and Russell, J.D. (1967) Infrared absorption spectrometry in clay studies. Clays and Clay Minerals, 15, 121142.CrossRefGoogle Scholar
Gao, X. (2017) Clay Mineralogy. Chemical Industry Press, China: Beijing, 230 pp. [in Chinese with English abstract].Google Scholar
Gates, W.P., Komadel, P., Madejová, J., Bujdák, J., Stucki, J.W. and Kirkpatrick, R.J. (2000) Electronic and structural properties of reduced-charge montmorillonites. Applied Clay Science, 16, 257271.CrossRefGoogle Scholar
Gournis, D., Lappas, A., Karakassides, M.A., Többens, D. and Moukarika, A. (2008) A neutron diffraction study of alkali cation migration in montmorillonites. Physics & Chemistry of Minerals, 35, 4958.CrossRefGoogle Scholar
Greene-Kelly, R. (1995) Dehydration of the montmorillonite minerals. Mineralogical Magazine and Journal of the Mineralogical Society, 30, 604615.CrossRefGoogle Scholar
Hindshaw, R.S., Tosca, R., Goût, T.L., Farnan, I., Tosca, N.J. and Tipper, E.T. (2019) Experimental constraints on Li isotope fractionation during clay formation. Geochimica et Cosmochimica Acta, 250, 219237.CrossRefGoogle Scholar
Jeldres, R.I., Uribe, L., Cisternas, L.A., Gutierrez, L., Leiva, W.H. and Valenzuela, J. (2019) The effect of clay minerals on the process of flotation of copper ores A critical review. Applied Clay Science, 170, 5769.CrossRefGoogle Scholar
Karakassides, M.A., Madejová, J., Arvaiová, B., Bourlinos, A., Petridis, D. and Komadel, P. (1999) Location of Li(I), Cu(II) and Cd(II) in heated montmorillonite: evidence from specular reflectance infrared and electron spin resonance spectroscopies. Journal of Materials Chemistry, 9, 15531558.CrossRefGoogle Scholar
Komadel, P., Madejova, J. and Bujdak, J. (2005) Preparation and properties of reduced-charge smectites—A review. Clays and Clay Minerals, 53, 313334.CrossRefGoogle Scholar
Li, R.H., Li, X.Y., Li, H.R., Zhao, K.P. and Peng, K. (2022) Structural characteristics of clay minerals and their progress in CO2 adsorption. Bulletin of the Chinese Ceramic Society, 41, 141152 [in Chinese with English abstract].Google Scholar
Liu, Q.F., Yao, X., Cheng, H.F. and Frost, R.L. (2012) An infrared spectroscopic comparison of four Chinese palygorskites. Spectrochimica Acta, A96, 784789.CrossRefGoogle Scholar
Luca, V. and Cardile, C.M. (1988) Thermally induced cation migration in Na and Li montmorillonite. Physics and Chemistry of Minerals, 16, 98103.CrossRefGoogle Scholar
Madejová, J., Arvaiová, B. and Komadel, P. (1999a) FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochimica Acta, A55, 24672476.CrossRefGoogle Scholar
Madejová, J., Arvaiová, B. and Komadel, P. (1999b) FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 24672476.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Petit, S. and Komadel, P. (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region. Clay Minerals, 35, 739751.CrossRefGoogle Scholar
Madejová, J., Pálková, H. and Komadel, P. (2006) Behaviour of Li+ and Cu2+ in heated montmorillonite: Evidence from far-, mid-, and near-IR regions. Vibrational Spectroscopy, 40, 8088.CrossRefGoogle Scholar
Pavón, E. and Alba, M.D. (2021) Swelling layered minerals applications: A solid state NMR overview. Progress in Nuclear Magnetic Resonance Spectroscopy, 124–125, 99128.CrossRefGoogle ScholarPubMed
Pistiner, J.S. and Henderson, G.M. (2003) Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214, 327339.CrossRefGoogle Scholar
Qi, C.W., Yin, Y.S., Wu, Z.H., Tao, J.H., Wang, T., Cheng, S., Liu, L. and Chen, D.L. (2022) Study on mineral transformation during the combustion of Xiangxi Coal by FTIR, XRD and XPS. Coal Conversion, 45, 1825 [in Chinese with English abstract].Google Scholar
Reinholdt, M., Miehe-Brendle, J., Delmotte, L., Le Dred, R. and Tuilier, M.H. (2005) Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium. Clay Minerals, 40, 177190.CrossRefGoogle Scholar
Russell, J.D. and Farmer, V.C. (1964) Infrared spectroscopic study of the dehydration of montmorillonite and saponite. Clay Minerals Bulletin, 5, 443464.CrossRefGoogle Scholar
Schultz, L.G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites. Clays and Clay Minerals, 17, 115149.CrossRefGoogle Scholar
Shen, M.L., Hrbek, J., Sham, T.K. and Xu, G.Q. (1990) A soft X-ray study of the interaction of oxygen with Li. Surface Science, 234, 324334.Google Scholar
Skoubris, E.N., Chryssikos, G.D., Christidis, G.E. and Gionis, V. (2013) Structural characterization of reduced-charge montmorillonites. Evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics. Clays and Clay Minerals, 61, 8397.CrossRefGoogle Scholar
Stackhouse, S. and Coveney, P. (2002) Study of thermally treated lithium montmorillonite by Ab Initio methods. Journal of Physical Chemistry B, 106, 1247012477.CrossRefGoogle Scholar
Steudel, A., Heinzmann, R., Indris, S. and Emmerich, K. (2015) CEC and 7Li MAS NMR study of interlayer Li+ in the montmorillonite-beidellite series at room temperature and after heating. Clays and Clay Minerals, 63, 337350.CrossRefGoogle Scholar
Takahashi, T., Kanhhashi, K. and Saito, K. (2008) First evidence of multiple octahedral Al sites in Na-montmorillonite by 27Al multiple quantum MAS NMR. Clays and Clay Minerals, 56, 520525.CrossRefGoogle Scholar
Tettenhorst, R. (1962) Cation migration in montmorillonites. American Mineralogist, 47, 769773.Google Scholar
Theng, B.K.G., Hayashi, S., Soma, M. and Seyama, H. (1997) Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of lithium migration in montmorillonite. Clays and Clay Minerals, 45, 718723.CrossRefGoogle Scholar
Wang, J., Wang, J.X., Zeng, F.G. and Wu, X.L. (2011) Molecular simulations of crystal structure conformation, X-ray diffraction and infra-red spectrum in montmorillonites. Acta Mineralogica Sinica, 31, 133138 [in Chinese with English abstract].Google Scholar
Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261264. https://doi.org/10.1180/clm.2020.30.CrossRefGoogle Scholar
Wu, Z., Zhao, H., Zhou, X., Wang, Y., Zuo, K. and Cheng, H. (2022) Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals, 12, 477.CrossRefGoogle Scholar
Xia, L.Y., Zhong, H., Liu, G.Y., Huang, Z.Q., Chang, Q.W. and Li, X.G. (2009) Comparative studies on flotation of illite, pyrophyllite and kaolinite with Gemini and conventional cationic surfactants. Transactions of Nonferrous Metals Society of China, 19, 446453.CrossRefGoogle Scholar
Zhao, H., Wang, Y. and Cheng, H.F. (2023) Recent advances in lithium extraction from lithium-bearing clay minerals. Hydrometallurgy, 217, 106025.CrossRefGoogle Scholar
Zhao, X.Y. and Zhang, Y.Y. (1990) Clay Minerals and Analysis of Clay Minerals. China Ocean Press, Beijing [in Chinese].Google Scholar
Zhao, K., Li, G.R., Sun, Z.X., Liu, J.H., Zhou, Y.P. and Xu, L.L. (2022a) Role of clay minerals in uranium mining and metallurgy and uranium rich environment treatment. Nonferrous Metals (Extractive Metallurgy), 111120 [in Chinese with English abstract].Google Scholar
Zhao, Y., Ma, W.P., Yang, Y., Cui, Y., Xu, L., Luo, C.G. and Wen, H.J. (2022b) Experimental study on the sorption of Li+ by clay minerals—implications for clay-type lithium deposit. Acta Mieralogica Sinica, 42, 141153 [in Chinese with English abstract].Google Scholar
Zhong, J., Lin, S. and Yu, J.G. (2021) Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination, 505, 114983.CrossRefGoogle Scholar
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material
Download Wu et al. supplementary material(File)
File 52 KB