Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T19:09:09.209Z Has data issue: false hasContentIssue false

Microwave techniques for the synthesis and deuteration of minerals, with particular reference to scorodite, FeAsO4.2H2O

Published online by Cambridge University Press:  05 July 2018

David R. Baghurst
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
Jack Barrett
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
Esther E. Coleyshaw
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
William P. Griffith
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
D. Michael P. Mingos
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK

Abstract

Microwave dielectric heating methods for the preparation of a number of arsenate, phosphate, vanadate, molybdate and carbonate minerals and their deuterated analogues are reported; rapid and efficient syntheses of these have been achieved. The application of this to the study of vibrational spectroscopy of minerals is discussed, with particular reference to scorodite.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Author to whom reprint requests should be addressed

References

Baghurst, D.R., Barrett, J. and Mingos, D.M.P. (1995) The Hydrothermal Microwave Synthesis of Scorodite: Iron (III) Arsenate (V) Dihydratc. J. Chem. Soc.; Chem. Commun., 323—4.CrossRefGoogle Scholar
Baker, W.E. (1966) An X-ray Diffraction Study of Synthetic Members of the Pyromorphite Series. Amer. Mineral, 51, 1712–21.Google Scholar
Belt, J.A.S., Christner, L.G. and Hall, W.K. (1967) Studies of the Hydrogen Held by Solids. XII. Hydroxyapatite Catalysts. J. Amer. Chem. Soc., 89, 5535–41.Google Scholar
Borgeois, M.L. (1886) Nouveaux Procedes de Preparation des Carbonates Cristallis6s. Compt. Rend. C, 103, 1088–91.Google Scholar
Braithwaite, R.S.W. (1983) Infrared Spectroscopic Analysis of the Olivenite-Adamite Series, and of Phosphate Substitution in Olivenite. Mineral. Mag., 47, 51-7.Google Scholar
Brooker, M.H., Sunder, S., Taylor, P. and Lopata, V.J. (1983) Infrared and Raman Spectra and X-ray Diffraction Studies of Solid Lead (II) Carbonates. Canad. J. Chem., 61, 494502.CrossRefGoogle Scholar
Cech, F., Jansa. J. and Novak, F. (1976) Kankitc, FeAsO4·3.5H2O, A New Mineral. Neues Jahrb. Mineral Mh., 9, 426–36.Google Scholar
Colcyshaw, E.E. and Griffith, W.P. (1994) Fourier Transform Raman Spectroscopy of Minerals. Spectrochim. Acta, 50A, 1909—18.Google Scholar
Dutrizac, J.E. and Jambor, J.L. (1988) The Synthesis of Crystalline Scorodite, FcAsO4-2H2O. Hydrometallurgy, 19, 377–84.CrossRefGoogle Scholar
Elliott, J.C. (1994) Structure and Chemistry of the Apatites and other Calcium Orthophosphates. In Studies in Inorganic Chemistry(Elsevier, R., cd.) Amsterdam. Vol 18, 99—104.Google Scholar
Eshchenko, L.S., Shchcgrov, L.N., Pcchkovskii, V.V. and Ustimovich, A.B. (1973) Crystalline Hydrates of Iron (III) Orthophosphate. Russ. J. Inorg. Chem., 18 (4), 478-81.Google Scholar
Falk, M. and Knop, O. (1973). In Water, a Comprehensive Treatise(Franks, F., ed.) Plenum, New York, 55—113.Google Scholar
Ferrer, E.G. and Baran, E.J. (1994) The Infrared Spectrum of VO(OH)2, Synthetic Duttonite. Spectrochim. Acta, 50A, 375—7.CrossRefGoogle Scholar
Flörke, O. (1967) Kristallisation und Polymorphic von A1P04 und AlPO4-SiO2 Mischkristallen. Zeits. Kristallogr., 125, 134-46.Google Scholar
Fowler, B.O. (1974) Infrared Studies of Apatites. I. Vibrational Assignments for Calcium and Barium Hydroxyapatites Utilising Isotopic Substitution. Inorg. Chem., 13, 194207.CrossRefGoogle Scholar
Griffith, W.P. (1969) Raman Studies on Rock-Forming Minerals, Part I. Orthosilicates and Cyclosilicates. J. Chem. Soc. (A), 1372—7.Google Scholar
Griffith, W.P. (1970a) Raman Spectroscopy of Minerals. Nature, 224, 264–6.CrossRefGoogle Scholar
Griffith, W.P. (1970/?) Raman Studies on Rock-Forming Minerals, Part II. Minerals containing MO?, M04 and M06 Groups. J. Chem. Soc. (A), 286-91.Google Scholar
Griffith, W.P. (1974) Raman Spectroscopy of Minerals. In The Infrared Spectra of Minerals(Farmer, V.C., ed.) Mincralogical Society, London, 119–35.CrossRefGoogle Scholar
Griffith, W.P. (1975) Raman Spectroscopy of Terrestrial Minerals. In Infrared and Raman Spectroscopy of Lunar and Terrrestrial Minerals(Karr, C., ed.) Academic Press, New York, 299323.CrossRefGoogle Scholar
Griffith, W.P. (1987) Advances in the Raman and Infrared Spectroscopy of Minerals. In Spectroscopy of Inorganic-based Materials. (Clark, R.J.H. and Hester, R.E., eds.)Wiley, London, 119—86.Google Scholar
Hawthorne, F.C. (1976) The Hydrogen Positions in Scoroditc. Acta Crystallogr. B32, 2891—2.CrossRefGoogle Scholar
Hill, R.J. and Jones, J.B. (1976) The Crystal Structure of Hopeite. Amer. Mineral, 61, 987–95.Google Scholar
Kitahama, K., Kiriyama. R. and Baba, Y. (1975) Refinement of the Crystal Structure of Scorodite. Acta Crystallogr. B31, 322—4.CrossRefGoogle Scholar
Lutz, H.D., Pobitschka, W., Frischmeier, B. and Bcckcr, R.A. (1978) Lattice Vibration Spectra - XX. Infrared And Raman Spectra Of BaCI2-2H2O and BaCl2-2D20. Applied Spectroscopy, 32, 541–7.CrossRefGoogle Scholar
Mathew, X. and Nayar, V.U. (1989) Infrared and Polarised Raman Spectra of Kainitc. Spectrochim. Acta, 45A, 877—8.CrossRefGoogle Scholar
Mingos, D.M.P. and Baghurst, D. (1991) Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chem. Soc. Rev., 20, 147.CrossRefGoogle Scholar
Moenke, H. (1962) Mineralspektren J. Akadcmic- Verlag, Berlin.Google Scholar
Moenke, H. (1966) Mineralspektren, II. Akademie-Verlag, Berlin.Google Scholar
Morales, J.G. and Clemente, R. R. (1990) Sintesis de Fosfatos de Alumino en Solucioncs Acuosas Diluidas. Bull. Soc. Espanol. Mineral, 13, 19.Google Scholar
Paques-Ledent, M. and Tarte, P. (1969) Spectre fnfra- rougc ct Structure dcs Composes GaPO4-2H2O ct GaAsO4-2H2O. Spectrochim. Acta, 25A, 1115—21.CrossRefGoogle Scholar
Petrov, I., Soptrajanov, B., Fuson, N. and Lawson, J.R. (1967) Infrared Investigation of Dicalcium Phosphates. Spectrochim. Acta, 23A, 2637—40.CrossRefGoogle Scholar
Schiffer, J. and Hornig, D.F. (1969) Infrared and Spectral Studies as a Tool For Sensing the Environment Around Water Molecules. In Hydrates. Nat. Bureau Standards Special Publ., 301, 257—9.Google Scholar
Schmidt, M. and Luts, H.D. (1993) Hydrogen Bonding in Basic Copper Salts — A Spectroscopic Study of Malachite, Cu2(OH)2CO3, and Brochantite, Cu4(OH)(iSO4. Phys. Chem. Minerals, 20, 2732.CrossRefGoogle Scholar
Seidl, V., Knop, O. and Falk, M. (1969) Infrared Studies of Crystalline Hydrates: Gypsum, CaS04-2H20. Canad. J. Chem., 47, 1361–8.CrossRefGoogle Scholar
Tartc, P. and Paques-Ledent, M.T. (1968) Spectre Infrarouge et Presence Probable dc 15Ion Hydroxonium dans des Composes du Type XP04-2H2O et XAs04-2H20. Bull. Soc. Chim. France, 1750—6.Google Scholar
Taylor, P. and Lopata, V.J. (1984) Stability and Solubility Relationships Between Some Solids in the System PbO-CO2-H2O. Cancui. J. Chem., 62, 395-402.Google Scholar
Thomas, G.H., Falk, M. and Knop, O. (1974) Infrared Studies of Water in Crystalline Hydrates: K2CUCI4 2H2O. Canad. J. Chem., 52, 1029–41.CrossRefGoogle Scholar
Toman, K. (1978) Ordering in Olivenite - Adamite Solid Solutions. Acta Crystallogr. B34, 715—21.CrossRefGoogle Scholar
Vartuli, J.C., Chu, P. and Dwyer, F.G. (1988) Crystallisation Method Using Microwave Radiation. U.S. Patent 4,778,666 9 Oct. 18.Google Scholar