Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T11:47:51.214Z Has data issue: false hasContentIssue false

Megawite, CaSnO3: a new perovskite-group mineral from skarns of the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia

Published online by Cambridge University Press:  05 July 2018

E. V. Galuskin*
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland
I. O. Galuskina
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland
V. M. Gazeev
Affiliation:
Institute of the Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Staromonetny 35, Moscow, Russia
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02–089 Warsaw, Poland
K. Prusik
Affiliation:
Institute of Materials Science, University of Silesia, Bankowa 12, 40–007 Katowice, Poland
N. N. Pertsev
Affiliation:
Institute of the Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Staromonetny 35, Moscow, Russia
A. E. Zadov
Affiliation:
OOO Science Research Centre ‘NEOCHEM’, Dmitrovskoye Highway 100/2, Moscow, Russia
R. Bailau
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland
A. G. Gurbanov
Affiliation:
Institute of the Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS, Staromonetny 35, Moscow, Russia

Abstract

Megawite is a perovskite-group mineral with an ideal formula CaSnO3 that was discovered in altered silicate-carbonate xenoliths in the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus. Russia. Megawite occurs in ignimbrite, where it forms by contact metamorphism at a temperature >800°C and low pressure. The name megawite honours the British crystallographer Helen Dick Megaw (1907—2002) who did pioneering research on perovskite-group minerals. Megawite is associated with spurrite, reinhardbraunsite, rondorfite, wadalite, srebrodolskite, lakargiite, perovskite, kerimasite. elbrusite-(Zr), periclase, hydroxylellestadite, hydrogrossular, ettringite-group minerals, afwillite. hydrocalumite and brucite. Megawite forms pale yellow or colourless crystals up to 15 urn on edge with pseudo-cubic and pseudo-cuboctahedral habits. The calculated density and average refractive index are 5.06 g cm–3 and 1.89, respectively. Megawite is Zr-rich and usually crystallizes on lakargiite. CaZrO3. The main bands in the Raman spectrum of megawite are at: 159, 183, 262, 283, 355, 443. 474, 557 and 705 cm–1. The unit-cell parameters and space group of megawite, derived from electron back scattered diffraction, are: a = 5.555(3), b = 5.708(2), c = 7.939(5) Å, V = 251.8(1) Å3, Pbnm, Z = 4; they are based on an orthorhombic structural model for the synthetic perovskite CaSn0.6Zr0.4O3.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, M.C.F., Souza, S.C., Lima, H.H.S., Nascimento, M.R., Silva, M.R.S., Espinosa, J.W.M., Lima, S.J.G., Longo, E., Pizani, P.S., Soledade, L.E.B., Souza, A.G. and Santos, I.M.G. (2009) Influence of the modifier on the short and long range disorder of stannate perovskites. Journal of Alloys and Compounds, 476, 507-512.CrossRefGoogle Scholar
Chen, X.Y., Ma, C., Bao, S.P. and Zhang, X.Y. (2010) Novel porous CaSnO3:Eu3+ and Ca2SnO4:Eu3+ phosphors by co-precipitation synthesis and postannealing approach: a general route to alkaline-earth stannates. Journal of Alloys and Compounds, 35-.Google Scholar
Day, A. and Trimby, P. (2004) Channel 5 manual. HKL Technology Inc., Hobro, Denmark.Google Scholar
Galuskin, E.V., Gazeev, V.M., Armbruster, T., Zadov, A.E., Galuskina, I.O., Pertsev, N.N., Dzierżanowski, P., Kadiyski, M., Gurbanov, A.G., Wrzalik, R. and Winiarski, A. (2008a) Lakargiite, CaZrO3: a new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia. American Mineralogist, 93, 1903-1910.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Gazeev, V.M., Pertsev, N.N., Winiarski, A., Zadov, A.E. and Dzierżanowski, P. (2008b) New data for minerals of CaZrO3–CaSnO3–CaTiO3 system. Abstracts of the 33rd International Geological Congress, Oslo, 2008, (http://www.cprm.gov.br/33IGC/1341658.html).Google Scholar
Galuskin, E.V., Gazeev, V.M., Lazic, B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Dzierżanowski, P., Gurbanov, A.G. and Bzowska, G. (2009) Chegemite, Ca7(SiO4)3(OH)2 – a new calcium mineral of the humite-group from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 21, 1045-1059.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Gazeev, V.M., Dzierżanowski, P., Prusik, K., Pertsev, N.N., Zadov, A.E. and Gurbanov, A.G. (2010) Megawite CaSnO3 – a new mineral of the perovskite group. Acta Mineralogica-Petrographica, 6, 444.Google Scholar
Galuskin, E.V., Armbruster, T., Galuskina, I.O., Lazic, B., Winiarski, A., Gazeev, V.M., Dzierżanowski, P., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Gurbanov, A.G., Janeczek, J. (2011a) Vorlanite (CaU6+)O4 – a new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 96, 188-196.CrossRefGoogle Scholar
Galuskin, E.V., Lazic, B., Savelyeva, V.B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Dzierżanowski, P., Pertsev, N.N. and Gazeev, V.M. (2011b) Pavlovskyite, IMA 2010-063. CNMNC Newsletter No. 8, April 2011, page 290; Mineralogical Magazine, 75, 289-294.Google Scholar
Galuskin, E.V., Galuskina, I.O., Lazic, B., Armbruster, T., Zadov, A.E., Krzykawski, T., Banasik, K., Gazeev, V.M. and Pertsev, N.N. (2011c) Rusinovite, IMA 2010-072. CNMNC Newsletter No. 8, April 2011, page 292; Mineralogical Magazine, 75, 289-294.Google Scholar
Galuskina, I.O., Lazic, B., Armbruster, T., Galuskin, E.V., Gazeev, V.M., Zadov, A.E., Pertsev, N.N., Jeżak, L., Wrzalik, R., and Gurbanov, A.G. (2009) Kumtyubeite Ca5(SiO4)2F2 – a new calcium mineral of the humite group from Northern Caucasus, Kabardino-Balkaria, Russia. American Mineralogist, 94, 1361-1370.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E., Wrzalik, R., and Gurbanov, A.G. (2010a) Bitikleite-(SnAl) and bitikleite-(ZrFe) – new garnets from xenoliths of the Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 95, 959-967.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Kusz, J., Dzierżanowski, P., Gazeev, V.M., Pertsev, N.N., Prusik, K., Zadov, A.E., Winiarski, A., Wrzalik, R., and Gurbanov, A.G. (2010b) Elbrusite-(Zr) – a new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 95, 1172-1181.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E., and Wrzalik, R. (2010c) Toturite Ca3Sn2Fe2SiO12 – a new mineral species of the garnet group. American Mineralogist, 95, 1305-1311.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Kusz, J., Dzierżanowski, P., Prusik, K., Gazeev, V.M., Pertsev, N.N. and Dubrovinsky, L. (2011a) Bitikleite-(SnFe), IMA 2010-064. CNMNC Newsletter, April 2011, page 290; Mineralogical Magazine, 75, 289-294.Google Scholar
Galuskina, I.O., Galuskin, E.V., Prusik, K., Gazeev, V.M., Pertsev, N.N. and Dzierżanowski, P. (2011b) Irinarassite, IMA 2010-073. CNMNC Newsletter No. 8, April 2011, page 292; Mineralogical Magazine, 75, 289-294.Google Scholar
Gazeev, V.M., Zadov, A.E., Gurbanov, A.G., Pertsev, N.N., Mokhov, A.V. and Dokuchaev, A.Y. (2006) Rare minerals from Verkhniechegemskaya caldera (in xenoliths of skarned limestone). Vestnik Vladikavkazskogo Nauchnogo Centra, 6, 18-27. [in Russian].Google Scholar
Kung, J., Angel, R.J. and Ross, N.L. (2001) Elasticity of CaSnO3 perovskite. Physics and Chemistry of Minerals, 28, 35-43.CrossRefGoogle Scholar
McMillan, P. and Ross, N. (1988) The Raman spectra of several orthorhombic calcium oxide perovskites. Physics and Chemistry of Minerals, 16, 21-28.CrossRefGoogle Scholar
Megaw, H.D. (1945) Crystal structure of barium titanate. Nature, 155, 484-485.Google Scholar
Megaw, H.D. (1946) Crystal structure of double oxides of the perovskite type. Proceedings of the Physical Society, 58, 133-152.CrossRefGoogle Scholar
Megaw, H.D. (1952) Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Crystallographica, 5, 739-749.CrossRefGoogle Scholar
Megaw, H.D. and Darlington, C.N.W. (1975) Geometrical and structural relations in the rhombohedral perovskites. Acta Crystallographica, A31, 173-.Google Scholar
Mitchell, R.H. (2002) Perovskites Modern and Ancient. Almaz Press, Thunder Bay, Ontario, Canada.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 767-.Google Scholar
Sonnet, P.M. (1981) Burtite, calcium hexahydroxostannate, a new mineral from El Hamman, central Morocco. The Canadian Mineralogist, 19, 401-.Google Scholar
Tarrida, M., Larguem, H. and Madon, M. (2009) Structural investigations of (Ca,Sr)ZrO3 and Ca(Sn,Zr)O3 perovskite compounds. Physics and Chemistry of Minerals, 36, 403-413.CrossRefGoogle Scholar
Tsuchiya, T. and Tsuchiya, J. (2006) New high-pressure phase relation in CaSnO3 . American Mineralogist, 91, 1879-1887.CrossRefGoogle Scholar
Vegas, A., Vallet-Regí, M., González-Calbet, J.M. and Alario-Franco, M.A. (1986) The ASnO3 (A = Ca, Sr) perovskites. Acta Crystallographica, B42, 172-.Google Scholar
Zhao, J., Ross, N.L. and Angel, R.J. (2004) Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Physics and Chemistry of Minerals, 31, 299-305.CrossRefGoogle Scholar