Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:28:26.214Z Has data issue: false hasContentIssue false

Margarite, corundum, gahnite and zincohögbomite in a blackwall, Raleigh Terrane, Eastern Piedmont Province, USA

Published online by Cambridge University Press:  05 July 2018

B. E. Owens*
Affiliation:
Department of Geology, College of William and Mary, Williamsburg, Virginia 23187, USA
H. E. Belkin
Affiliation:
U.S. Geological Survey, National Center, Mail Stop 956, Reston, Virginia 20192, USA
J. M. Zerolis
Affiliation:
1388 Alabama Street, San Francisco, California 94110, USA
*
* E-mail: beowen@wm.edu

Abstract

We report an unusual occurrence of margarite, corundum, gahnite and zincohögbomite from the Raleigh terrane in the Piedmont Province of Virginia. The assemblage occurs in a chlorite-rich blackwall associated with a small metamorphosed ultramafic rock body. The blackwall is dominated by chlorite, but also contains distinctive clusters (1–4 mm across) that typically consist of ragged Zn-rich spinel grains surrounded by masses of randomly oriented margarite. Also spatially associated with spinel are smaller grains of corundum and högbomite. In most cases, spinel and högbomite are sufficiently enriched in Zn to be called gahnite and zincohögbomite, respectively. Some högbomite grains are distinctly banded in back-scattered electron images, primarily reflecting variations in Zn-content. Textures suggest that högbomite formed at the expense of spinel (although locally the reverse relationship holds), and högbomite compositions mimic those of spinel. Margarite appears to be a later phase, and textures imply formation via reactions with spinel, corundum and, possibly, chlorite. This occurrence of Zn-rich spinel and högbomite is clearly related to the bulk composition of the blackwall rock, which contains >2500 ppm Zn. The origin of this Zn-rich composition is unclear, but could be due to a small amount of sphalerite or zincian-staurolite in the protolith.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermand, D., Windley, B.F. and Herd, R.K. (1983) Magnesian högbomite in a sapphirine-bearing rock from the Fiskenaesset region, W. Greenland. Mineralogical Magazine, 47, 555561.CrossRefGoogle Scholar
Armbruster, T. (1998) Zincohögbomite-8H from Samos (Greece): crystal structure, polysomatism, and polytypism in hö gbomite related structures. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 461468.Google Scholar
Armbruster, T. (2002) Revised nomenclature of hö gbomite, nigerite, and taaffeite minerals. European Journal of Mineralogy, 14, 389395.CrossRefGoogle Scholar
Armbruster, T., Bermanec, V., Zebec, V., and Oberhänsli, R. (1998) Titanium and iron poor zincohö gbomite-16H, Zn14(Al,Fe3+,Ti,Mg)8 Al24O62(OH)2, from Nezilovo, Macedonia: occurrence and crystal structure of a new polysome. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 469477.Google Scholar
Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177200.Google Scholar
Angus, N.S. and Middleton, R., (1985) Compositional variation in högbomites from north Connemara, Ireland. Mineralogical Magazine, 49, 649654.CrossRefGoogle Scholar
Atkin, B.P. (1978) Hercynite as a breakdown product of staurolite from within the aureole of the Ardara Pluton, Co. Donegal, Eire. Mineralogical Magazine, 42, 237239.CrossRefGoogle Scholar
Baltatzis, E. and Katagas, C., (1981) Margarite pseudomorphs after kyanite in Glen Esk, Scotland. American Mineralogist, 66, 213216.Google Scholar
Beukes, G.J., van Zyl, V.C., Schoch, A.E., De Bruiyn, H., van Aswegen, G., and Strydom, D., (1986) A högbomite-spinel-gedrite paragenesis from northern Bushmanland, Namaqua mobile belt, South Africa. Neues Jahrbuch für Mineralogie Abhandlungen, 55, 5366.Google Scholar
Brady, J.B. (1977) Metasomatic zones in metamorphic rocks. Geochimica et Cosmochimica Acta, 41, 113125.CrossRefGoogle Scholar
Bucher, K. and Frey, M., (1994) Petrogenesis of Metamorphic Rocks. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Bucher, K., De Capitani, C., and Grapes, R., (2005) The development of a margarite-corundum blackwall by metasomatic alteration of a slice of mica schist in ultramafic rock, Kvesjöen, Norwegian Caledonides. The Canadian Mineralogist, 43, 129156.CrossRefGoogle Scholar
Coolen, J.J.M.M.M. (1981) Högbomite and aluminium spinel from some metamorphic rocks and Fe-Ti ores. Neues Jahrbuch für Mineralogie Monatshefte, 1981, 374384.Google Scholar
Couture, R.A. and Dymek, R.F. (1996) A re-examination of absorption and enhancement effects in X-ray fluorescence trace element analysis. American Mineralogist, 81, 639650.CrossRefGoogle Scholar
Couture, R.A., Smith, M.S. and Dymek, R.F. (1993) X-ray fluorescence analysis of silicate rocks using fused glass discs and a side-window Rh tube: accuracy, precision and reproducibility. Chemical Geology, 110, 315328.CrossRefGoogle Scholar
Curtis, C.D. and Brown, P.E. (1969) The metasomatic development of zoned ultrabasic bodies in Unst, Shetland. Contributions to Mineralogy and Petrology, 24, 275292.CrossRefGoogle Scholar
Dietvorst, E.J.L. (1980) Biotite breakdown and the formation of gahnite in metapelitic rocks from Kemio, southwest Finland. Contributions to Mineralogy and Petrology, 75, 327337.CrossRefGoogle Scholar
Dymek, R.F. (1983) Margarite pseudomorphs after corundum, Qôrqut area, Godthåbsfjord, West Greenland. Rapport Grønlands Geologiske Undersøgelse, 112, 9599.Google Scholar
Dymek, R.F. and Owens, B.E. (2001) Chemical assembly of Archaean anorthosites from amphibolite- and granulite-facies terranes, SW Greenland. Contributions to Mineralogy and Petrology, 141, 513528.CrossRefGoogle Scholar
Evans, B.W. (1964) Fractionation of elements in the pelitic hornfelses of the Cashel-Lough Wheelaun intrusion, Connemara, Eire. Geochimica et Cosmochimica Acta, 28, 127156.CrossRefGoogle Scholar
Farrar, S.S. (1985) Tectonic evolution of the easternmost Piedmont, North Carolina. Geological Society of America Bulletin, 96, 362380.2.0.CO;2>CrossRefGoogle Scholar
Farrar, S.S. (1998) The Goochland terrane, VA-NC, revisited. Geological Society of America, Abstracts with Program, 30, 11.Google Scholar
Farrar, S.S. and Owens, B.E. (2001) A north-south transect of the Goochland terrane and associated Atype granites, Virginia-North Carolina. Pp. 7592. in: Field Trip Guidebook, Geological Society of America, Southeastern Section, 50th Annual Meeting (C.W. Hoffman, editor). Raleigh, North Carolina, USA.Google Scholar
Feenstra, A. (1997) Zincohögbomite and gahnite in a diaspore-bearing metabauxite from eastern Samos (Greece): mineral chemistry, element partitioning and reaction relations. Schweizerische Mineralogische und Petrographische Mitteilungen, 77, 7393.Google Scholar
Feenstra, A., Ockenga, E., Rhede, D., and Wiedenbeck, M., (2003) Li-rich zincostaurolite and its decompression- related breakdown products in a diasporebearing metabauxite from East Samos (Greece): an EMP and SIMS study. American Mineralogist, 88, 789805.CrossRefGoogle Scholar
Friedman, G.M. (1952) Study of högbomite. American Mineralogist, 37, 600608.Google Scholar
Gatehouse, B.M. and Grey, I.E. (1982) The crystal structure of högbomite-8H. American Mineralogist, 67, 373380.Google Scholar
Gibson, G.M. (1979) Margarite in kyanite- and corundum-bearing anorthosite, amphibolite, and hornblendite from central Fiordland, New Zealand. Contributions to Mineralogy and Petrology, 68, 171179.CrossRefGoogle Scholar
Gieré, R. (1986) Zirconolite, allanite, and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr, and REE. Contributions to Mineralogy and Petrology, 93, 459470.CrossRefGoogle Scholar
Goldberg, S.A. (1994) U-Pb geochronology of volcanogenic terranes of the eastern North Carolina Piedmont; preliminary results. Pp. 1317. in: Geology and Field Trip Guide, western flank of the Raleigh metamorphic belt, North Carolina (E.F. Stoddard and D.E. Blake, editors). The Carolina Geological Society. Raleigh, North Carolina, USA.Google Scholar
Grew, E., Abraham, K., and Medenbach, O., (1987) Tipoor hoegbomite in kornerupine-cordierite-sillimanite rocks from Ellammankovilpatti, Tamil Nadu, India. Contributions to Mineralogy and Petrology, 95, 2131.CrossRefGoogle Scholar
Grew, E., Hiroi, Y., and Shiraishi, K., (1990) Högbomite from the Prince Olav Coast, East Antarctica: an example of oxidation-exsolution of a complex magnetite solid solution? American Mineralogist, 75, 589600.Google Scholar
Guggenheim, S. (1984) The brittle micas. Pp. 61104. in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357467. in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Guidotti, C.V. and Cheney, J.T. (1976) Margarite pseudomorphs after chiastolite in the Rangeley area, Maine. American Mineralogist, 61, 431434.Google Scholar
Guidotti, C.V., Post, J.L. and Cheney, J.T. (1979) Margarite pseudomorphs after chiastolite in the Georgetown area, Cal i fornia. American Mineralogist, 64, 728732.Google Scholar
Haas, H. (1972) Diaspore-corundum equilibrium determined by epitaxis of diaspore on corundum. American Mineralogist, 57, 13751385.Google Scholar
Heimann, A., Spry, P.G. and Teale, G.S. (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulfide occurrences, Colorado: a reevaluation of gahnite composition as a guide in exploration. The Canadian Mineralogist, 43, 601622.CrossRefGoogle Scholar
Hejny, C. and Armbruster, T., (2002) Polysomatism in högbomite: the crystal structures of 10T, 12H, 14T, and 24R polysomes. American Mineralogist, 87, 277292.CrossRefGoogle Scholar
Hejny, C., Gnos, E., Grobety, B., and Armbruster, T., (2002) Crystal chemistry of the polysome ferrohögbomite- 2N2S, a long-known but newly defined mineral species. European Journal of Mineralogy, 14, 957967.CrossRefGoogle Scholar
Hibbard, J.P., van Staal, C.R. and Rankin, D.W. (2007) A comparative analysis of pre-Silurian crustal building blocks of the northern and southern Appalachian orogen. American Journal of Science, 307, 2345.CrossRefGoogle Scholar
Horton, J.W., Jr. and Stern, T.W. (1994) Tectonic significance of preliminary uranium-lead ages from the eastern Piedmont of North Carolina. Geological Society of America, Abstracts with Program, 26, 21.Google Scholar
Horton, J.W., Jr., Peper, J.D., Marr, J.D., Jr., Burton, W.C. and Sacks, P.E. (1993) Explanation accompanying Preliminary Geologic Map of the South Boston 30 6 60 Minute Quadrangle, Virginia and North Carolina. US Geological Survey Open File Report, 93-244, US Geological Survey, Reston, Virginia, USA, 20 pp.Google Scholar
Jan, M.Q., Kempe, D.R.C. and Tahirkheli, R.A.K. (1971) Corundum, altering to margarite, in amphibolites from Dir, West Pakistan. Mineralogical Magazine, 38, 106109.CrossRefGoogle Scholar
Matthes, S. and Olesch, M., (1986) Polymetamorphicmetasomatic blackwall rocks of the Falkenberg granite contact aureole near Erbendorf, Oberpfalz, Bavaria. Neues Jahrbuch für Mineralogie Abhandlungen, 153, 325362.Google Scholar
Moleva, V.A. and Myasnikov, V.S. (1952) Högbomite and its variety zinc-högbomite. Doklady Akademii Nauk SSSR, 83, 733736. (in Russian).Google Scholar
Ockenga, E., Yalçin, Ü., Medenbach, O., and Schreyer, W., (1998) Zincohögbomite, a new mineral from eastern Aegean metabauxites. European Journal of Mineralogy, 10, 13611366.CrossRefGoogle Scholar
Owens, B.E. and Buchwaldt, R., (2009) The taste of crow: a revised age for a metaigneous variety of the Raleigh gneiss, southeastern Virginia Piedmont. Geological Society of America, Abstracts with Program, 41, 10.Google Scholar
Owens, B.E. and Dymek, R.F. (1997) Comparative petrology of Archaean anorthosites in amphibolite and granulite facies terranes, SW Greenland. Contributions to Mineralogy and Petrology, 128, 371384.CrossRefGoogle Scholar
Peacor, D. (1967) New data on nigerite. American Mineralogist, 52, 864866.Google Scholar
Petersen, E.U., Essene, E.J., Peacor, D.R. and Marcotty, L.A. (1989) The occurrence of högbomite in highgrade metamorphic rocks. Contributions to Mineralogy and Petrology, 101, 350360.CrossRefGoogle Scholar
Phillips, A.H. and Hess, H.H. (1936) Metamorphic differentiation at contacts between serpentinite and siliceous country rocks. American Mineralogist, 21, 333362.Google Scholar
Rakotonandrasana, N.O.T., Arima, M., Miyawaki, R., and Rambelson, R.A. (2010) Widespread occurrences of högbomite-2N2S in UHT metapelites from the Betroka belt, southern Madagascar: implications of melt or fluid activity during regional metamorphism. Journal of Petrology, 51, 869895.CrossRefGoogle Scholar
Rammlmair, D., Mogessie, A., Purtscheller, F., and Tessadri, R., (1988) Högbomite from the Vumba schist belt, Botswana. American Mineralogist, 73, 651656.Google Scholar
Ranson, W.A. (2000) Margarite-corundum phyllites from the Appalachian orogen of South Carolina: mineralogy and metamorphic history. American Mineralogist, 85, 1617.1624.CrossRefGoogle Scholar
Razakamanana, T., Ackermand, D., and Windley, B.F. (2000) Högbomite in migmatitic paragneiss in the Betroka shear belt, Vohidava area, Precambrian of southern Madagascar. Mineralogy and Petrology, 68, 257269.CrossRefGoogle Scholar
Read, H.H. (1934) On zoned associations of antigorite, talc, actinolite, chlorite, and biotite in Unst, Shetland Islands. Mineralogical Magazine, 23, 519540.CrossRefGoogle Scholar
Riesco, M., Stüwe, K. and Reche, J., (2005) Formation of corundum in metapelites around ultramafic bodies. An example from the Saualpe region, eastern Alps. Mineralogy and Petrology, 83, 125.CrossRefGoogle Scholar
Sacks, P.E. (1999) Geologic overview of the Eastern Appalachian Piedmont along Lake Gaston, North Carolina and Virginia. Pp. 115. in: Geology of the Fall Zone Region along the North Carolina – Virginia State Line (P.E. Sacks, editor). Field trip guidebook for the 1999 meeting of the Carolina Geological Society. Carolina Geological Society. Raleigh, North Carolina, USA.Google Scholar
Sanford, R.F. (1982) Growth of ultramafic reaction zones in greenschist to amphibolite facies metamorphism. American Journal of Science, 282, 543616.CrossRefGoogle Scholar
Sengupta, P., Raith, M.M. and Levitsky, V.I. (2004) Compositional characteristics and paragenetic relations of magnesiohögbomite in aluminous amphibolites from the Belomorian complex, Baltic Shield, Russia. American Mineralogist, 89, 819831.CrossRefGoogle Scholar
Sengupta, P., Bhui, U.K., Braun, I., Dutta, U., and Mukhopadhyay, D., (2009) Chemical substitutions, paragenetic relations, and physical conditions of formation of högbomite in the Sittampundi layered anorthosite complex, South India. American Mineralogist, 94, 1520.1534.CrossRefGoogle Scholar
Spry, P.G. and Petersen, E.U. (1989) Zincian högbomite as an exploration guide to metamorphosed massive sulfide deposits. Mineralogical Magazine, 53, 263269.CrossRefGoogle Scholar
Spry, P.G. and Scott, S.D. (1986) The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed sulfide deposits. Economic Geology, 81, 1446.1463.CrossRefGoogle Scholar
Stoddard, E.F. (1979) Zinc-rich hercynite in high-grade metamorphic rocks: a product of the dehydration of staurolite. American Mineralogist, 64, 736741.Google Scholar
Stoddard, E.F., Farrar, S.S., Horton, J.W., Jr., Butler, J.R. and Druhan, R.M. (1991) The Eastern Piedmont in North Carolina. Pp. 7992. in: The Geology of the Carolinas (J.W. Horton, Jr. and V.A. Zullo, editors). University of Tennessee Press, Knoxville, Tennessee, USA.Google Scholar
Takla, M.A., Trommsdorff, V., Basta, F.F. and Surour, A.A. (2003) Margarite in ultramafic alteration zones (blackwall): a new occurrence in Barramiya area, Egypt. European Journal of Mineralogy, 15, 991999.CrossRefGoogle Scholar
Teale, G.S. (1979) Margarite from the Olary Province of South Australia. Mineralogical Magazine, 43, 433435.CrossRefGoogle Scholar
Teale, G.S. (1980) The occurrence of högbomite and taaffeite in a spinel-phlogopite schist from the Mount Painter Province of south Australia. Mineralogical Magazine, 43, 575577.CrossRefGoogle Scholar
Tsunogae, T. and Santosh, M., (2005) Ti-free högbomite in spinel- and sapphirine-bearing Mg-Al rock from the Palghat-Cauvery shear zone system, southern India. Mineralogical Magazine, 69, 937949.CrossRefGoogle Scholar
Visser, D., Thijssen, P.H.M. and Schumacher, J.C. (1992) Högbomite in sapphirine-bearing rocks from the Bamble sector, south Norway. Mineralogical Magazine, 56, 343351.CrossRefGoogle Scholar
Watson, T.L. (1925) Hoegbomite from Virginia. American Mineralogist, 10, 19.Google Scholar
Wilson, A.F. (1977) A zincian högbomite and some other högbomites from the Strangways Range, central Australia. Mineralogical Magazine, 41, 337344.CrossRefGoogle Scholar
Yalçin, Ü., Schreyer, W., and Medenbach, O., (1993) Znrich hö gbomite formed from gahnite in the metabauxites of the Menderes Massif, SW Turkey. Contributions to Mineralogy and Petrology, 113, 314324.CrossRefGoogle Scholar
Zakrzewski, M.A. (1977) Högbomite from the Fe-Ti deposit of Liganga (Tanzania). Neues Jahrbuch für Mineralogie Monatshefte, 1977, 373380.Google Scholar
Zerolis, J.M. (2010) Mineralogy and geochemistry of metamorphosed ultramafic rocks in the Raleigh Terrane, Piedmont Province, Virginia. B.S. thesis, College of William and Mary, Williamsburg, Virginia, USA.Google Scholar