Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T07:49:00.987Z Has data issue: false hasContentIssue false

Magmatic and post-magmatic evolution of the Newania carbonatite complex, Rajasthan, north-western India

Published online by Cambridge University Press:  08 August 2023

Amritpaul Singh*
Affiliation:
Department of Geology, Panjab University, Chandigarh, India
Roger H. Mitchell
Affiliation:
Department of Geology, Lakehead University, Thunder Bay Ontario, Canada
Gurmeet Kaur
Affiliation:
Department of Geology, Panjab University, Chandigarh, India
D. Srinivasa Sarma
Affiliation:
CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad, India
*
Corresponding author: Amritpaul Singh; Email: apsbhatti05@gmail.com

Abstract

This work describes the mineralogy of dolomite carbonatite occurring at the Newania carbonatite complex, Rajasthan, north-western India. The mineralogy records the textural and compositional features of magmatic and post-magmatic stages of carbonatite evolution. Ferroan dolomite is the principal constituent and displays variable degrees of deformation, ranging from brittle-to-ductile deformation regimes. Apatite exhibits textural and compositional evolutionary trends from early-to-late stages of carbonatite evolution. Two varieties of amphibole are reported for the first time from this complex, ferri-winchite and cummingtonite; the former is magmatic and the latter is metamorphic in origin. The columbite–tantalite-series minerals are columbite-(Fe), and their paragenesis evolves from composite grains with pyrochlore to individual crystals. Pyrochlore is magmatic with U–Ta–Ti-rich compositions and shows evolution from calciopyrochlore to kenopyrochlore, followed by alteration during late-stages of carbonatite evolution. Monazite and baryte constitute the post-magmatic mineral assemblage; the former is hydrothermal and crystallised after precursor apatite, whereas the latter is associated exclusively with columbite–pyrochlore composites. On the basis of the mineralogy of the carbonatite, it is concluded that the parent magma was generated by low-degree partial melting of magnesite–phlogopite-bearing peridotite.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Leone Melluso

References

Ahmad, I., Mondal, M.E.A., Rahaman, M.S., Bhutani, R. and Satyanarayanan, M. (2020) Archean granitoids of the Aravalli Craton, northwest India. Geological Society, London, Special Publications, 489, 215234.10.1144/SP489-2018-195CrossRefGoogle Scholar
Anenburg, M., Mavrogenes, J.A., Frigo, C. and Wall, F. (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Science Advances, 6, eabb6570. doi: 10.1126/sciadv.abb6570CrossRefGoogle ScholarPubMed
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.10.3749/canmin.48.3.673CrossRefGoogle Scholar
Bambi, A.C.J.M., Costanzo, A., Gonçalves, A.O. and Melgarejo, J.C. (2012) Tracing the chemical evolution of primary pyrochlore from plutonic to volcanic carbonatites: the role of fluorine. Mineralogical Magazine, 76, 377392.10.1180/minmag.2012.076.2.07CrossRefGoogle Scholar
Basu, S.K. and Bhattacharyya, T. (2014) Petrography and mineral chemistry of alkaline-carbonatite complex in Singhbhum crustal province, Purulia region, eastern India. Journal of Geological Society of India, 83, 5470.10.1007/s12594-014-0007-4CrossRefGoogle Scholar
Bell, K. and Simonetti, A. (2010) Source of parental melts to carbonatites–critical isotopic constraints. Mineralogy and Petrology, 98, 7789.10.1007/s00710-009-0059-0CrossRefGoogle Scholar
Bhattacharjee, S., Dey, M., Chakrabarty, A., Mitchell, R.H. and Ren, M. (2022) Zero-valent-dominant pyrochlores: Endmember formula calculation and petrogenetic significance. The Canadian Mineralogist, 60, 469484.CrossRefGoogle Scholar
Boukirou, W., Bouabdellah, M., Chakhmouradian, A. R., Mouttaqi, A., Reguir, E.P., Hauff, F., Cuney, M., J́ebrak, M., Yans, J. and Hoernle, K. (2022) Petrogenesis of the late Paleoproterozoic Gleibat Lafhouda dolomite carbonatite (West African Craton Margin, Moroccan Sahara) and its relevance to the onset of fragmentation of the Columbia supercontinent. Chemical Geology, 594, 120764, doi:10.1016/j.chemgeo.2022.120764CrossRefGoogle Scholar
Brey, G., Brice, W.R., Ellis, D.J., Green, D.H., Harris, K.L. and Ryabchikov, I.D. (1983) Pyroxene-carbonate reactions in the upper mantle. Earth and Planetary Science Letters, 62, 6374.10.1016/0012-821X(83)90071-7CrossRefGoogle Scholar
Broom-Fendley, S., Styles, M.T., Appleton, J.D., Gunn, G. and Wall, F. (2016) Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. American Mineralogist, 101, 596611.CrossRefGoogle Scholar
Broom-Fendley, S., Brady, A.E., Wall, F., Gunn, G. and Dawes, W. (2017) REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geology Reviews, 81, 2341.10.1016/j.oregeorev.2016.10.019CrossRefGoogle Scholar
Buckley, H.A. and Woolley, A.R. (1990) Carbonates of the magnesite–siderite series from four carbonatite complexes. Mineralogical Magazine, 54, 413418.CrossRefGoogle Scholar
Buick, I.S., Allen, C., Pandit, M.K., Rubatto, D. and Hermann, J. (2006) The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, central Rajasthan, India: LA-ICP-MS U–Pb zircon constraints. Precambrian Research, 151, 119142.10.1016/j.precamres.2006.08.006CrossRefGoogle Scholar
Burtseva, M.V., Ripp, G.S., Doroshkevich, A.G., Viladkar, S.G. and Varadan, R. (2013) Features of mineral and chemical composition of the Khamambettu Carbonatites, Tamil Nadu. Journal of Geological Society of India, 81, 655664.10.1007/s12594-013-0087-6CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineralogical Magazine, 62, 769782.10.1180/002646198548151CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore-and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.10.1127/0935-1221/2002/0014-0821CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. III. Silicate minerals. The Canadian Mineralogist, 40, 13471374.10.2113/gscanmin.40.5.1347CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2012) Rare earth mineralization in igneous rocks; sources and processes. Elements, 8, 347353.10.2113/gselements.8.5.347CrossRefGoogle Scholar
Chakhmouradian, A.R., Böhm, C.O., Demény, A., Reguir, E.P., Hegner, E., Creaser, R.A., Halden, N.M. and Yang, P. (2009) “Kimberlite” from Wekusko Lake, Manitoba: actually a diamond-indicator-bearing dolomite carbonatite. Lithos, 112, 347357.10.1016/j.lithos.2009.03.039CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P., Kressall, R.D., Crozier, J., Pisiak, L.K., Sidhu, R. and Yang, P. (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geology Reviews, 64, 642666.10.1016/j.oregeorev.2014.04.020CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P. and Zaitsev, A.N. (2016) Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineralogy and Petrology, 110, 333360.10.1007/s00710-015-0390-6CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xu, C., Kynický, J., Hamid Mumin, A. and Yang, P. (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274, 188213.10.1016/j.lithos.2016.12.037CrossRefGoogle Scholar
Chen, W., Honghui, H., Bai, T. and Jiang, S. (2017) Geochemistry of monazite within carbonatite related REE deposits. Resources, 6, 51, doi:10.3390/resources6040051CrossRefGoogle Scholar
Chudy, T.C. (2014) The petrogenesis of the Ta-bearing Fir carbonatite system, east-central British Columbia, Canada. PhD Thesis, University of British Columbia, Canada.Google Scholar
Chukanov, N., Pasero, M., Aksenov, S., Britvin, S., Zubkova, N., Yike, L. and Witzke, T. (2023) Columbite supergroup of minerals: Nomenclature and classification. Mineralogical Magazine, 87, 18–33, doi:10.1180/mgm.2022.105CrossRefGoogle Scholar
Dalsin, M.L., Groat, L.A., Creighton, S. and Evans, R.J. (2015) The mineralogy and geochemistry of the Wicheeda carbonatite complex, British Columbia, Canada. Ore Geology Reviews, 64, 523542.10.1016/j.oregeorev.2014.02.013CrossRefGoogle Scholar
Dar, K.K. (1964) Some geological data on Atomic Energy minerals in India. Geological Society of India, 5, 112120.Google Scholar
Deans, T. and Powell, J.L. (1968) Trace elements and strontium isotopes in carbonatites, fluorites and limestones from India and Pakistan. Nature, 218, 75075210.1038/218750a0CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (2013) An Introduction to the Rock-Forming Minerals. The Mineralogical Society, London, 549 pp.10.1180/DHZCrossRefGoogle Scholar
Dey, M., Bhattacharjee, S., Chakrabarty, A., Mitchell, R.H., Pal, S., Pal, S. and Sen, A.K. (2021) Compositional variation and genesis of pyrochlore, belkovite and baotite from the Sevattur carbonatite complex, India. Mineralogical Magazine, 85, 588606.10.1180/mgm.2021.37CrossRefGoogle Scholar
Dharma Rao, C.V., Santosh, M., Purohit, R., Wang, J., Jiang, X. and Kusky, T. (2011) LA-ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian Plate. Journal of Asian Earth Sciences, 42, 286305.10.1016/j.jseaes.2011.01.018CrossRefGoogle Scholar
Doroshkevich, A.G., Wall, F. and Ripp, G.S. (2007) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineralogy and Petrology, 90, 1949.10.1007/s00710-006-0165-1CrossRefGoogle Scholar
Doroshkevich, A.G., Ripp, G. and Viladkar, S. (2010a) Newania carbonatites, Western India: example of mantle derived magnesium carbonatites. Mineralogy and Petrology, 98, 283295.CrossRefGoogle Scholar
Doroshkevich, A.G., Ripp, G.S. and Moore, K.R. (2010b) Genesis of the Khaluta alkaline-basic Ba-Sr carbonatite complex (west Transbaikala, Russia). Mineralogy and Petrology, 98, 245268.10.1007/s00710-009-0063-4CrossRefGoogle Scholar
Falloon, T.J. and Green, D.H. (1990) Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 18, 195199.10.1130/0091-7613(1990)018<0195:SOCFPU>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Fareeduddin, and Banerjee, D.M. (2020) Aravalli craton and its mobile belts: An update. Episodes Journal of International Geoscience, 43, 88108.Google Scholar
Fareeduddin, and Kroner, A. (1998) Single zircon age constraints on the evolution of the Rajasthan granulites. Pp 547556 in: The Indian Precambrian. Jodhpur, India, (Paliwal, B. S., editor) Scientific Publications.Google Scholar
Fosu, B.R., Ghosh, P., Chew, D.M. and Viladkar, S.G. (2019) Composition and U—Pb ages of apatite in the Amba Dongar carbonatite–alkaline complex, India. Geological Journal, 54, 34383454.10.1002/gj.3350CrossRefGoogle Scholar
Giebel, R.J., Gauert, C.D., Marks, M.A., Costin, G. and Markl, G. (2017) Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. American Mineralogist, 102, 12181233.CrossRefGoogle Scholar
Gruau, G., Petibon, C., Viladkar, S., Fourcade, S., Bernard-Griffiths, J. and Mace, J. (1995) Extreme isotopic signatures in carbonatites from Newania, Rajasthan. Terra Nova, 7(Suppl. 1), 336.Google Scholar
GSI (2011) Geology and Mineral Resources of Rajasthan. Geological Survey of India, Miscellaneous Publications No. 30, Part 12, 3rd revised edition, 130 pp.Google Scholar
Guarino, V., Wu, F.Y., Melluso, L., de Barros Gomes, C., Tassinari, C.C.G., Ruberti, E. and Brilli, M. (2017) U–Pb ages, geochemistry, C–O–Nd–Sr–Hf isotopes and petrogenesis of the Catalão II carbonatitic complex (Alto Paranaíba Igneous Province, Brazil): implications for regional-scale heterogeneities in the Brazilian carbonatite associations. International Journal of Earth Sciences, 106, 19631989.CrossRefGoogle Scholar
Gupta, B.C. (1934) The Geology of Central Mewar. Memoirs of the Geological Society of India, 107168 pp.Google Scholar
Hammouda, T., Chantel, J. and Devidal, J.L. (2010) Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochimica et Cosmochimica Acta, 74, 72207235.10.1016/j.gca.2010.09.032CrossRefGoogle Scholar
Harlov, D.E. (2011) Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia Granite Pegmatite, Froland, Bamble Sector, southern Norway. Mineralogy and Petrology, 102, 7786.10.1007/s00710-011-0166-6CrossRefGoogle Scholar
Harlov, D.E. (2015) Apatite: A fingerprint for metasomatic processes. Elements, 11, 171176.10.2113/gselements.11.3.171CrossRefGoogle Scholar
Harlov, D.E. and Förster, H.J. (2003) Fluid-induced nucleation of (Y+ REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 12091229.10.2138/am-2003-8-905CrossRefGoogle Scholar
Harlov, D.E., Andersson, U.B., Förster, H.J., Nyström, J.O., Dulski, P. and Broman, C. (2002) Apatite–monazite relations in the Kiirunavaara magnetite–apatite ore, northern Sweden. Chemical Geology, 191, 4772.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Heron, A.M. (1953) The geology of central Rajputana. Memoirs of the Geological Society of India, 79, 339.Google Scholar
Jago, B.C. and Gittins, J. (1991) The role of fluorine in carbonatite magma evolution. Nature, 349, 5658.10.1038/349056a0CrossRefGoogle Scholar
Jago, B.C. and Gittins, J. (1993) Pyrochlore crystallization in carbonatites: the role of fluorine. South African Journal of Geology, 96, 149160.Google Scholar
Kim, S.J., Lee, H.K., Yin, J. and Park, J.K. (2005) Chemistry and origin of monazites from carbonatite dikes in the Hongcheon–Jaeun district, Korea. Journal of Asian Earth Sciences, 25, 5767.10.1016/j.jseaes.2004.01.008CrossRefGoogle Scholar
Kjarsgaard, B. and Peterson, T. (1991) Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: Petrographic and experimental evidence. Mineralogy and Petrology, 43, 293314.10.1007/BF01164532CrossRefGoogle Scholar
Krishnamurthy, P. (2019) Carbonatites of India. Journal of Geological Society of India, 94, 117138.10.1007/s12594-019-1281-yCrossRefGoogle Scholar
Lastochkin, E.I., Ripp, G.S. and Doroshkevich, A.G. (2011) Mineralogy of metamorphosed carbonatite of the Vesely occurrence, Northern Transbaikal region, Russia. Geology of Ore Deposits, 53, 236247.10.1134/S107570151102005XCrossRefGoogle Scholar
Le Maitre, R. (2002) Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (2nd ed.). Cambridge University Press, Cambridge, UK.Google Scholar
Locock, A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 111.10.1016/j.cageo.2013.09.011CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. American Mineralogist, 80, 732743.10.2138/am-1995-7-810CrossRefGoogle Scholar
Martin, R.F. (2007) Amphiboles in the igneous environment. Pp. 323358 in: Amphiboles: crystal chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A. editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.10.1515/9781501508523-010CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Guarino, V., Zanetti, A. and Sinha, A.K. (2010) Mineral compositions and petrogenetic evolution of the ultramafic-alkaline–carbonatitic complex of Sung Valley, northeastern India. The Canadian Mineralogist, 48, 205229.10.3749/canmin.48.1.205CrossRefGoogle Scholar
Mitchell, R.H. (2005) Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist, 43, 20492068.10.2113/gscanmin.43.6.2049CrossRefGoogle Scholar
Mitchell, R.H. (2009) Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contributions to Mineralogy and Petrology, 158, 589598.CrossRefGoogle Scholar
Mitchell, R.H. (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geology Reviews, 64, 626641.10.1016/j.oregeorev.2014.03.010CrossRefGoogle Scholar
Mitchell, R.H. and Gittins, J. (2022) Carbonatites and carbothermalites: A revised classification. Lithos, 430, 106861, doi:10.1016/j.lithos.2022.106861CrossRefGoogle Scholar
Mitchell, R.H. and Kjarsgaard, B.A. (2004) Solubility of niobium in the system CaCO3–CaF2–NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma. Contributions to Mineralogy and Petrology, 148, 281287.10.1007/s00410-004-0603-1CrossRefGoogle Scholar
Mitchell, R.H. and Smith, D.L. (2017) Geology and mineralogy of the Ashram zone carbonatite, Eldor Complex, Quebec. Ore Geology Reviews, 86, 784806.10.1016/j.oregeorev.2017.04.004CrossRefGoogle Scholar
Mitchell, R.H., Wahl, R. and Cohen, A. (2020) Mineralogy and genesis of pyrochlore apatitite from The Good Hope Carbonatite, Ontario: A potential niobium deposit. Mineralogical Magazine, 84, 8191.10.1180/mgm.2019.64CrossRefGoogle Scholar
Montero, P., Haissen, F., Mouttaqi, A., Molina, J.F., Errami, A., Sadki, O., Cambeses, A. and Bea, F. (2016) Contrasting SHRIMP U–Pb zircon ages of two carbonatite complexes from the peri-cratonic terranes of the Reguibat. Implications for the Lateral Extension of the West African Craton. Gondwana Research, 38, 238250.10.1016/j.gr.2015.12.005CrossRefGoogle Scholar
Nasraoui, M. and Bilal, E. (2000) Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): a geochemical record of different alteration stages. Journal of Asian Earth Sciences, 18, 237251.10.1016/S1367-9120(99)00056-5CrossRefGoogle Scholar
Pandit, M.K. and Golani, P.R. (2001) Reappraisal of the petrologic status of Newania ‘carbonatite’ of Rajasthan, western India. Journal of Asian Earth Sciences, 19, 305310.10.1016/S1367-9120(00)00016-XCrossRefGoogle Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Ramakrishnan, M. and Vaidyanandhan, R. (2010) Geology of India, Vol 1 and 2. Geological Society of India, Bangalore.Google Scholar
Rampilova, M., Doroshkevich, A., Viladkar, S. and Zubakova, E. (2021) Mineralogy of dolomite carbonatites of Sevathur complex, Tamil Nadu, India. Mineral, 11, 355, doi:10.3390/min11040355Google Scholar
Ray, J.S., Shukla, A.D. and Dewangan, L. K. (2010) Carbon and oxygen isotopic compositions of Newania Dolomite Carbonatites, Rajasthan, India: implications for source of carbonatites. Mineralogy and Petrology, 98, 269282.10.1007/s00710-009-0073-2CrossRefGoogle Scholar
Ray, J.S., Pande, K., Bhutani, R., Shukla, A.D., Rai, V.K., Kumar, A., Awasthi, A., Smitha, R.S. and Panda, D.K. (2013) Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma. Contributions to Mineralogy and Petrology, 166, 16131632.10.1007/s00410-013-0945-7CrossRefGoogle Scholar
Reguir, E.P., Chakhmouradian, A.R., Pisiak, L., Halden, N.M., Yang, P., Xu, C., Kynický, J. and Couëslan, C.G. (2012) Trace-element composition and zoning in clinopyroxene-and amphibole-group minerals: implications for element partitioning and evolution of carbonatites. Lithos, 128, 2745.10.1016/j.lithos.2011.10.003CrossRefGoogle Scholar
Roy, A.B. and Jakhar, S.R. (2002) Geology of Rajasthan (Northwest India): Precambrian to Recent. Scientific Publishers, 421 pp.Google Scholar
Sadiq, M., Ranjith, A. and Umrao, R.K. (2014) REE mineralization in the carbonatites of the Sung Valley ultramafic-alkaline-carbonatite complex, Meghalaya, India. Central European Journal of Geosciences, 6, 457475.Google Scholar
Samoylov, V.S. (1977) Carbonatites: Facies and Formation Conditions. Nauka Press, Moscow, Russia [in Russian].Google Scholar
Schandl, E.S. and Gorton, M.P. (2004) A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99, 10271035.10.2113/gsecongeo.99.5.1027CrossRefGoogle Scholar
Schleicher, H., Todt, W., Viladkar, S.G. and Schmidt, F. (1997) Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories. Chemical Geology, 140, 261273.CrossRefGoogle Scholar
Secher, K. and Larsen, L.M. (1980) Geology and mineralogy of the Sarfartôq carbonatite complex, southern West Greenland. Lithos, 13, 199212.10.1016/0024-4937(80)90020-1CrossRefGoogle Scholar
Slezak, P. and Spandler, C. (2019) Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: An example of the Gifford Creek Carbonatite Complex, Western Australia. Lithos, 328, 212227.10.1016/j.lithos.2019.01.028CrossRefGoogle Scholar
Sorokhtina, N.V., Belyatsky, B.V., Zaitsev, V.A., Viladkar, S.G., Kononkova, N.N., and Ghatak, A. (2022) New Data on the Age and Genesis of the Newania Carbonatite Complex, Rajasthan, India. Geochemistry International, 60, 12371261.CrossRefGoogle Scholar
Tantkar, P. (2019) Geological Investigations of Newania Carbonatite Deposits Udaipur District Rajasthan with Special Reference to Petrogenesis. PhD Thesis, Mohanlal Sukhadia University, Udaipur, India.Google Scholar
Trofanenko, J., Williams-Jones, A.E., Simandl, G.J. and Migdisov, A.A. (2016) The nature and origin of the REE mineralization in the Wicheeda Carbonatite, British Columbia, Canada. Economic Geology, 111, 199223.CrossRefGoogle Scholar
Viladkar, S.G. (1980) The fenitized aureole of the Newania carbonatite, Rajasthan. Geological Magazine, 117, 285292.10.1017/S0016756800030508CrossRefGoogle Scholar
Viladkar, S.G. and Bismayer, U. (2014) U-rich pyrochlore from Sevathur carbonatites, Tamil Nadu. Journal of the Geological Society of India, 83, 175182.10.1007/s12594-014-0030-5CrossRefGoogle Scholar
Viladkar, S.G. and Ghose, I. (2002) U-rich pyrochlore in carbonatite of Newania, Rajasthan. Neues Jahrbuch für Mineralogie-Monatshefte, 2002, 97106.10.1127/0028-3649/2002/2002-0097CrossRefGoogle Scholar
Viladkar, S.G. and Pawaskar, P.B. (1989) Rare earth element abundances in carbonatites and fenites of the Newania complex, Rajasthan, India. Bulletin of the Geological Survey of Finland, 61, 113122.CrossRefGoogle Scholar
Viladkar, S.G. and Subramanian, V. (1995) Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. Journal of the Geological Society of India, 45, 505505.Google Scholar
Viladkar, S.G. and Wimmenauer, W. (1986) Mineralogy and geochemistry of the Newania carbonatite–fenite complex, Rajasthan, India. Neues Jahrbuch für Mineralogie–Abhandlungen, 156, 121.Google Scholar
Viladkar, S.G. and Wimmenauer, W. (1992) Geochemical and petrological studies on the Amba Dongar carbonatites (Gujarat, India). Chemie der Erde, 52, 277291.Google Scholar
Viladkar, S.G., Bismayer, U. and Zietlow, P. (2017) Metamict U-rich pyrochlore of Newania carbonatite, Udaipur, Rajasthan. Journal of the Geological Society of India, 89, 133138.CrossRefGoogle Scholar
Wallace, M.E. and Green, D.H. (1988) An experimental determination of primary carbonatite magma composition. Nature, 335, 343346.10.1038/335343a0CrossRefGoogle Scholar
Watkinson, D.H. and Wyllie, P.J. (1971). Experimental study of the composition join NaAlSiO4–CaCO3–H2O and the genesis of Alkalic Rock—Carbonatite Complexes. Journal of Petrology, 12, 357378.10.1093/petrology/12.2.357CrossRefGoogle Scholar
Weidendorfer, D., Schmidt, M.W. and Mattsson, H.B. (2017) A common origin of carbonatite magmas. Geology, 45, 507510.CrossRefGoogle Scholar
Woolley, A.R. and Buckley, H.A. (1993) Magnesite-siderite series carbonates in the Nkombwa and Newania carbonatite complexes. South African Journal of Geology, 96, 126130.Google Scholar
Woolley, A.R. and Kjarsgaard, B.A. (2008) Carbonatite Occurrences of the World: Map and Database. Geological Survey of Canada Open File # 5796, 28 pp.CrossRefGoogle Scholar
Wyllie, P.J. and Biggar, G.M. (1966) Fractional crystallization in the “Carbonatite Systems” CaO-MgO-CO2-H2O and CaO-CaF2-P2O5-CO2-H2O. Pp 92105 in: Papers and Proceedings of the 4th General Meeting - International Mineralogical Association. Mineralogical Survey of India, New Delhi.Google Scholar
Wyllie, P.J. and Huang, W.L. (1975) Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature, 257, 297299.10.1038/257297a0CrossRefGoogle Scholar
Xu, C., Kynicky, J., Chakhmouradian, A.R., Campbell, I.H. and Allen, C.M. (2010) Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos, 118, 145155.10.1016/j.lithos.2010.04.003CrossRefGoogle Scholar
Ying, J., Zhou, X. and Zhang, H. (2004) Geochemical and isotopic investigation of the Laiwu–Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75, 413426.CrossRefGoogle Scholar
Zurevinski, S.E. and Mitchell, R.H. (2004) Extreme compositional variation of pyrochlore-group minerals at the Oka carbonatite complex, Quebec: evidence of magma mixing? The Canadian Mineralogist, 42, 11591168.CrossRefGoogle Scholar
Supplementary material: File

Singh et al. supplementary material

Table S1

Download Singh et al. supplementary material(File)
File 37.2 KB