Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:43:46.721Z Has data issue: false hasContentIssue false

Kazanskyite, Ba & TiNbNa3Ti(Si2O7)2O2(OH)2(H2O)4, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure

Published online by Cambridge University Press:  05 July 2018

F. Cámara*
Affiliation:
Dipartimento di Scienze della Terra, Universitá degli Studi di Torino, via Valperga Caluso 35, 10125 Torino, Italy
E. Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow 119017, Russia
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract

Kazanskyite, Ba & TiNbNa3Ti(Si2O7)2O2(OH)2(H2O)4, is a Group-III TS-block mineral from the Kirovskii mine, Mount Kukisvumchorr, Khibiny alkaline massif, Kola Peninsula, Russia. The mineral occurs as flexible and commonly bent flakes 2–15 μm thick and up to 330 μm across. It is colourless to pale tan, with a white streak and a vitreous lustre. The mineral formed in a pegmatite as a result of hydrothermal activity. Associated minerals are natrolite, barytolamprophyllite, nechelyustovite, hydroxylapatite, belovite-(La), belovite-(Ce), gaidonnayite, nenadkevichite, epididymite, apophyllite-(KF) and sphalerite. Kazanskyite has perfect cleavage on {001}, splintery fracture and a Mohs hardness of 3. Its calculated density is 2.930 g cm–3. Kazanskyite is biaxial positive with α 1.695, β 1.703, γ 1.733 (λ590 nm), 2Vmeas = 64.8(7)°, 2Vcalc = 55.4°, with no discernible dispersion. It is not pleochroic. Kazanskyite is triclinic, space group P, a 5.4260(9), b 7.135(1), c 25.514(4) Å, α 90.172(4), β 90.916(4), γ 89.964(3)°, V 977.61(3) Å3. The strongest lines in the X-ray powder-diffraction pattern [d(Å)(I)(hkl)] are: 2.813(100)(12,1), 2.149(82)(22,20,207,220,22), 3.938(70)(13,112), 4.288(44)(11,10,110,11), 2.128(44)(22,2,14,221,14,221,23), 3.127(39)(16,115), 3.690(36)(14), 2.895(33)(13,121) and 2.955(32)(10,120,12). Chemical analysis by electron microprobe gave Nb2O59.70, TiO219.41, SiO228.21, Al2O30.13, FeO 0.28, MnO 4.65, BaO 12.50, SrO 3.41, CaO 0.89, K2O 1.12, Na2O 9.15, H2O 9.87, F 1.29, O = F –0.54, sum 100.07 wt.%; H2O was determined from structure refinement. The empirical formula is (Na2.55Mn0.31Ca0.11Fe2+0.03)Σ3(Ba0.70Sr0.28K0.21Ca0.03)Σ1.22(Ti2.09Nb0.63Mn0.26Al0.02)Σ3Si4.05O21.42H9.45F0.59, calculated on 22 (O + F) a.p.f.u., Z = 2. The structural formula of the form AP2MH2MO4(Si2O7)2XO4XPMXPA(H2O)n is (Ba0.56Sr0.22K0.15Ca0.030.04)Σ1(☐0.74Ba0.14Sr0.06K0.06)Σ1(Ti0.98Al0.0 2)Σ1(Nb0.63Ti0.37)Σ1(Na2.55Mn0.31Ca0.11Fe2+0.03)Σ3(Ti0.74Mn0.26)Σ1(Si2O7)2O2(OH1.41F0.59)Σ2(H2O)(☐0.74H2O0.26)Σ1(H2O)2.74. Simplified and ideal formulae are as follows: Ba(☐,Ba)Ti(Nb,Ti)(Na,Mn)3(Ti,Mn)(Si2O7)2O2(OH,F)2(H2O)4 and Ba☐TiNbNa3Ti(Si2O7)2O2(OH)2(H2O)4. The Raman spectrum of the mineral contains the following bands: 3462 cm–1 (broad) and 3545 and 3628 cm–1 (sharp). The crystal structure was solved by direct methods and refined to an R1 index of 8.09%. The crystal structure of kazanskyite is a combination of a TS (titanium silicate) block and an I (intermediate) block. The TS block consists of HOH sheets (H is heteropolyhedral and O is octahedral). The TS block exhibits linkage and stereochemistry typical for Group-III (Ti = 3 a.p.f.u.) Ti-disilicate minerals. The TS block has two different H sheets where (Si2O7) groups link to [5]-coordinated Ti and [6]-coordinated Nb polyhedra, respectively. There are two peripheral sites, AP(1,2), occupied mainly by Ba (less Sr and K) at 96% and 26%. There are two I blocks: the I1 block is a layer of Ba atoms; the I2 block consists of H2O groups and AP(2) atoms. The TS and I blocks are topologically identical to those in the nechelyustovite structure. The mineral is named in honour of Professor Vadim Ivanovich Kazansky, a prominent Russian ore geologist and an expert in Precambrian metallogeny.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy. Silica, Silicates, Volume 2, Part 1. Mineral Data Publishing, Tucson, Arizona. 446 pp.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 1-30 in: Structure and Bonding in Crystals II (M. Ókeeffe and A. Navrotsky, editors). Academic Press, New York..Google Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidoria, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied. Crystallography, 38, 381388 Google Scholar
Cámara, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group-III Ti-disilicate mineral. Mineralogica. Magazine, 71, 593610 Google Scholar
Cámara, F. and Sokolova, E. (2009) From structure topology to chemical composition. X. Titanium silicates: the crystal structure and crystal chemistry of nechelyustovite, a group III Ti-disilicate mineral. Mineralogica. Magazine, 73, 887897 Google Scholar
Cámara, F., Sokolova, E. and Nieto, F. (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4 (OH,F)7. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate mineral. Mineralogica. Magazine, 73, 855870 Google Scholar
Dudkin, O.B. (1959) On barium lamprophyllite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 88, 713715.[in Russian].Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite, Na11Ti4+Nb2 (Si2O7)2(PO4)2O3(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. The Canadia. Mineralogist, 36, 13111320 Google Scholar
Ferraris, G., Belluso, E., Gula, A., Soboleva, S.V., Ageeva, O.A. and Borutskii, B.E. (2001) A structural model of the layer titanosilicate bornemanite based on siedozerite and lomonosovite modules. The Canadia. Mineralogist, 39, 16651673 CrossRefGoogle Scholar
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya.A. and Meńshikov, Yu.P. (2003) Crystal structures of lamprophyllite-2M and lampro- phyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia. Europea. Journal of Mineralogy, 15, 711718 CrossRefGoogle Scholar
Meńshikov, Yu.P., Bussen, I.V., Goiko, E.A., Zabavnikova, N.I., Mer’kov, A.N. and Khomyakov, A.P. (1975) Bornemanite - a new silicophosphate of sodium, titanium, niobium and barium. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 104, 322326.[in Russian].Google Scholar
Németh, P., Khomyakov, A.P., Ferraris, G. and Menshikov, Yu.P. (2009) Nechelyustovite, a new heterophyllosilicate mineral, and new data on bykovaite: a comparative TEM study. European Journal of Mineralogy, 21, 251260 CrossRefGoogle Scholar
Nespolo, M. and Ferraris, G. (2004) Applied geminography - symmetry analysis of twinned crystals and definition of twinning by reticular polyholohedry. Acta Crystallographica, A60, 8995.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(rZ) procedure for improved quantitative microanalysis. Pp. 104-106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California.USA.Google Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (1999) Crystal structure of a new high-barium analogue of lamprophyllite with a primitive unit cell. Doklado Chemistry, 368, 228231 Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Act Crystallographica, A32, 751767 CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Act Crystallographica, A64, 112122 CrossRefGoogle Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadia. Mineralogist, 44, 12731330 CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2008) From structure topology to chemical composition. III. Titanium silicates: crystal chemistry of barytolamprophyllite. The Canadia. Mineralogist, 46, 403412 CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M3O11-14] trimeric structures: from hyperagpaitic complexes to saline lakes. The Canadia. Mineralogist, 39, 12751294 CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadia. Mineralogist, 42, 797806 CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. The Canadia. Mineralogist, 46, 14691477 Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadia. Mineralogist, 43, 15271544 CrossRefGoogle Scholar
Sokolova, E., Cámara, F. and Hawthorne, F.C. (2011) From structure topology to chemical composition. XI. Titanium silicates: crystal structures of innelite- 1T and innelite-2M from the Inagli massif, Yakutia, Russia, and the crystal chemistry of innelite. Mineralogica. Magazine, 75, 24952518 Google Scholar
Spek, A.L. (2008) PLATON, A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands. Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Cámara et al. supplementary material

Table D. Anisotropic displacement parameters (Å2) for selected atoms in kazanskyite

Download Cámara et al. supplementary material(File)
File 89.1 KB
Supplementary material: PDF

Cámara et al. supplementary material

IMA Letter for kazanskyite

Download Cámara et al. supplementary material(PDF)
PDF 111.5 KB
Supplementary material: File

Cámara et al. supplementary material

Kazanskyite CIF

Download Cámara et al. supplementary material(File)
File 115.8 KB
Supplementary material: File

Cámara et al. supplementary material

Kazanskyite structure factors

Download Cámara et al. supplementary material(File)
File 475.5 KB