Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T23:46:14.564Z Has data issue: false hasContentIssue false

Jarosite formation in weathered siliceous chalk in Fontevrault abbey, Loire Valley, France

Published online by Cambridge University Press:  05 July 2018

Andreas Bauer
Affiliation:
Ecole Normale Supérieure, Departement de Géologie, 24, rue Lhomond, F-75231 Paris Cedex 05, France BRGM, Département Géomatériaux et Géoprocédés, Avenue de Concyr, B.P. 6009, F-45060 Orléans Cedex 2, France
Bruce Velde
Affiliation:
Ecole Normale Supérieure, Departement de Géologie, 24, rue Lhomond, F-75231 Paris Cedex 05, France

Abstract

Jarosite, a hydrous potassium iron sulphate mineral, has been found as the product of weathering in a silicic chalk building stone of a 13th century abbey at Fontevrault (Maine-et-Loire, France). Destabilization of pyrite and glauconite dispersed in the calcareous stone results in the formation of jarosite. The alteration process is probably of very local origin, within the zone in the building stone at its surface where oxidation occurs during wetting and drying on a cyclical basis. The problem of the incompatibility of highly acidic solutions needed to stabilise jarosite (2.5 < pH) within the highly porous, calcareous silicate rock is not explained at present.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, C.N., Nordstrom, D.K. and Ball, J. W. (1989) Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California, USA. Sci. Geol. Bull., 42, 281-98.CrossRefGoogle Scholar
Bauer, A. (1994) Diagenese des Buntsandstein im Bereich der Rheingraben-Westrandstörung bei Bad Düirkheim. Mitt. Pollichia, 81, 215-88.Google Scholar
Berzina, A.P., Kuzentsova, I.A. and Sotnikov, V.I. (1966) Hypogene jarosite. Geol. Geofiz, 8, 112-4.(cited in Chem. Abstr., 66, 5457).Google Scholar
Botinelly, T. (1976) A review of the minerals of the alunite-jarosite, beudantite, and plumbogummite groups. J. Res. USGS, 4, 213-6.Google Scholar
Cunningham, C.G., Rye, R.O., Steven, T.A. and Mehnert, H.H. (1984) Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, West Central Utah. Econ. Geol., 79, 50-71.CrossRefGoogle Scholar
De Kimpe, C.R. and Miles, N. (1992) Formation of some swelling clay minerals by sulphide oxidation in some metamorphic rocks and related soils of Ontario, Canada. Canad. J. Soil Sci., 72, 263-70.CrossRefGoogle Scholar
Dessandier, D. (1995) Etude du milieux poreux et des propriétés transfert des fluides du tuffeau blanc de Touraine. Application à la durabilité des pierres en oeuvre. Thèse de 3ème cycle, Université de Tours.Google Scholar
Ducloux, J., Meunier, A. and Velde, B. (1976) Smectite, chlorite, and a regular interlayered chlorite-vermi-culite in soils developed on a small serpentinite body, Massif Central, France. Clay Minerals, 11, 121-35.CrossRefGoogle Scholar
Dutrizac, J.E. (1980) The physical chemistry of iron precipitation in the zinc industry. In Lead-Zinc-Tin “80 (Cigan, J.M. et al., eds), pp. 532-64. AIME.Google Scholar
John, D.A., Nash, J.T., Clark, C.W. and Wulftange, W.H. (1991) Geology, Hydrothermal Alteration, and Mineralization at the Paradise Peak Gold-Silver and Mercury Deposit, Nye Country, Nevada. In Proceedings of the Great Basin Symposium, 1020-50. Geol. Soc. Nevada.Google Scholar
Keith, W.J., Calk, L. and Ashley, R.P. (1979) Crystals of coexisting alunite and jarosite, Goldfield, Nevada. Shorter contributions to Mineralogy and Petrology, C1-C5.Google Scholar
Lestinne, B., Saux, M. and Vdm, R. (1990) Calcul d'affinement des paramktres cristallins. Computer Program.Google Scholar
Nordstrom, D.K. (1977) Hydrogeochemical microbiological factors affecting the heavy metal chemistry of an acid mine drainage system. Ph.D. thesis, Stanford University.Google Scholar
Pisarenco, D., Morat, P. and Le Mouel, J.L. (1996) On a possible mechanism of sandstone alteration: evidence from electrical potential measurements. C. R Acad. Sci., Paris, 322, 1724.Google Scholar
Scott, K.M. (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, northwest Queensland, Australia. Amer. Mineral., 72, 178-87.Google Scholar
Shamshuddin, J. and Auxtero, E.A. (1991) Soil solution compositions and mineralogy of some active acid and sulphate soils in Malaysia as affected by laboratory incubation with time. Soil Sci., 152, 365-76.CrossRefGoogle Scholar
Stahl, R.S., Fanning, D.S. and James, B.R. (1993) Goethite and jarosite precipitation from ferrous sulfate solutions. Soil Sci. Amer. J., 57, 280—-2,CrossRefGoogle Scholar
Stoffregen, R.E. (1993) Stability relations of jarosite and natrojarosite at 150—250°C. Geochim. Cosmochim. Acta, 57, 2417–29.CrossRefGoogle Scholar
Stoffregen, R.E. and Rye, R.O. (1992) Jarosite-water 180 and D fractionations. Amer. Chem. Soc. Div. Geochim., 204, 86 (abstr.).Google Scholar
Tkachenko, R.I. and Zotov, A.V. (1974) Ultra-acid terms of volcanic origin as mineralizing solutions. In Hydrothermal Mineral Forming Solutions in the Area of Active Volcanism (Naboko, S.I., ed.), 126-31. Oxoniam Press.Google Scholar