Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:26:55.999Z Has data issue: false hasContentIssue false

Investigations of the Fe sulfosalts berthierite, garavellite, arsenopyrite and gudmundite by Raman spectroscopy

Published online by Cambridge University Press:  05 July 2018

S. Kharbish*
Affiliation:
Geology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
P. Andráš
Affiliation:
Department of Environmental Management, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia

Abstract

Arsenopyrite (FeAsS), gudmundite (FeSbS) and the rarer Fe sulfosalts berthierite (FeSb2S4) and garavellite (FeSbBiS4), were investigated by Raman spectroscopy. Whereas (Sb,Bi)S3 pyramids are responsible for the Raman spectra of berthierite and garavellite, the spectra of gudmundite and arsenopyrite arise from the stretching and bending modes of (Sb,As)S units. Internal vibrations for berthierite and garavellite occur between 400 and 50 cm–1, and those of the gudmundite and arsenopyrite between 500 and 100 cm–1. The longer bond distances of the SbS3 groups readily explain the lower frequencies for berthierite in comparison with garavellite. Similarly, the greater mass and the longer bond distances of the Sb–S units also explain the lower frequencies observed for gudmundite relative to arsenopyrite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., (2000) Handbook of Mineralogy. IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson.Google Scholar
Bente, K . and Edenharter, A . ( 1989 ) Rontgenographische Strukturanalyse von MnSb2S4 und Strukturverfeinerung von Berthierit, FeSb2S4. Zeitschrift für Kristallographie, 185, 3133.Google Scholar
Bindi, L. and Menchetti, S. (2005) Garavellite, FeSbBiS4, from the Caspari mine, North Rhine- Westphalia, Germany: composition, physical properties and determination of the crystal structure. Mineralogy and Petrology, 85, 131139.CrossRefGoogle Scholar
Bindi, L., Moёlo, Y., Léone, P. and Suchaud, M. (2012) Stoichiometric arsenopyrite, FeAsS, from La Roche- Balue Quarry, Loire-Atlantique, France: crystal structure and Mössbauer study. The Canadian Mineralogist, 50, 471479.CrossRefGoogle Scholar
Buerger, M.J., (1936) The symmetry and crystal structure of the minerals of the arsenopyrite group, Zeitschrift für Kristallographie, 95, 83113.Google Scholar
Buerger, M.J., (1939) The crystal structure of gudmundite. American Mineralogist, 24, 183184.Google Scholar
Buerger, M.J., and Hahn, T. (1955) The crystal structure of berthierite, FeSb2S4. American Mineralogist, 40, 226238.Google Scholar
Campbell, I.H., and Fauchet, P.M., (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Communications, 85, 739741.CrossRefGoogle Scholar
Downs, R.T., (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 00313.Google Scholar
Farmer, V.C., (editor) (1974) The Infrared Spectra of Minerals. Mineralogical Society Monograph 4. The Mineralogical Society, London.Google Scholar
Fuess, H., Kratz, T., Topel-Schadt, J., and Miehe, G. (1987) Crystal structure refinement and electron microscopy of arsenopyrite. Zeitschrift für Kristallographie, 179, 335346.CrossRefGoogle Scholar
Giudici, G.D., Pelo, S.D., Lorrai, M., Musu, E., Fanfani, L., Ricci, C. and Cama, J. (2007) Arsenopyrite surface reactivity: a laboratory investigation on pH role. Pp. 419422 in: Water in Mining Environments (R. Cidu and F. Frau (editors). IMWA Symposium. Mako Edizioni, Cagliari, Italy.Google Scholar
Gregorio, F., Lattanzi, P., Tanelli, G. and Vurro, F. (1979) Garavellite, FeSbBiS4, a new mineral from the Cu-Fe deposit of Valle del Frigido in the Apuane Alps, northern Tuscany, Italy. Mineralogical Magazine, 43, 99102.CrossRefGoogle Scholar
Irmer, G. (1985) Zum Einfluss der Apparatefunktion auf die Bestimmung von Streuquerschnitten und Lebensdauern aus optischen Phononenspektren. Experimentelle Technik der Physik, 33, 501506.Google Scholar
Kharbish, S. (2011) Raman spectroscopic investigations of some Tl-sulfosalt minerals containing pyramidal (As,Sb)S3 groups. American Mineralogist, 96, 609616.CrossRefGoogle Scholar
Kharbish, S., Libowitzky, E. and Beran, A. (2007) The effect of As–Sb substitution in the Raman spectra of tetrahedrite-tennantite and pyrargyrite-proustite solid solutions. European Journal of Mineralogy, 19, 567574.CrossRefGoogle Scholar
Kharbish, S., Libowitzky, E. and Beran, A. (2009) Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb,Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. European Journal of Mineralogy, 21, 325333.CrossRefGoogle Scholar
Lemoine, P.P., Carre, D. and Robert, F. (1991) Structure du sulfure de fer et d’antimoine, FeSb2S4 (berthiérite). Acta Crystallographica, C47, 938940.Google Scholar
Lukaszewicz, K., Pietraszko, A., Stepien-Damm, J., Kajokas, A., Grigas, J. and Drulis, H. (2001) Crystal structure, Mössbauer spectra, thermal expansion, and phase transition of berthierite FeSb2S4. Journal of Solid State Chemistry, 162, 7983.CrossRefGoogle Scholar
Lutz, H.D., and Müller, B. (1991) Lattice vibration spectra. LXVIII. Single-crystal Raman spectra of marcasite-type iron chalcogenides and pnictides F.X. , (X=S S., Te; P A., Sb). Physics and Chemistry of Minerals, 18, 265268.CrossRefGoogle Scholar
Lutz, H.D., Schneider, G. and Kliche, G. (1983) Chalcides and pnictides of group VIII transition metals, far-infrared spectroscopic studies on compounds MX2, MXY, and MY2 with pyrite, marcasite, and arsenopyrite structure. Physics and Chemistry of Minerals, 9, 109114.CrossRefGoogle Scholar
McGuire, M.M., Edwards, K.J., Banfield, J.F., and Hamers, R.J., (2001a) Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochimica et Cosmochimica Acta, 65, 12431258.CrossRefGoogle Scholar
McGuire, M.M., Jallad, K.N., Ben-Amotz, D., and Hamers, R.J., (2001b) Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy. Applied Surface Science, 178, 105115.CrossRefGoogle Scholar
Mernagh, T.P., and Trudu, A.G., (1993) A laser Raman microprobe study of some geologically important sulphide minerals. Chemical Geology, 103, 113127.CrossRefGoogle Scholar
Morimoto, N. and Clark, L.A., (1961) Arsenopyrite crystal-chemical relations, from Freiberg, Germany. American Mineralogist, 46, 14481469.Google Scholar
Mycroft, J.R., Bancroft, G.M., McIntyre, N.S., Lorimer, J.W., and Hill, I.R., (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. Journal of Electroanalytical Chemistry, 292, 139152.CrossRefGoogle Scholar
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. Fifth edition. Wiley-Interscience, New York.Google Scholar
Nyquist, R.A., and Kagel, R.O., (1971) Infrared Spectra of Inorganic Compounds. Academic Press, New York.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H., (2001) Strunz Mineralogical Tables. Schweizer’bart, Stuttgar, Germany.Google Scholar
Verma, P., Abbi, S.C., and Jain, K.P., (1995) Raman scattering probe of anharmonic effects in GaAs. Physical Review B, 51, 1666016667.CrossRefGoogle Scholar
Wang, A., Han, J., Guo, L., Yu, J. and Zeng, P. (1994) Database of standard Raman spectra of minerals and related inorganic crystals. Applied Spectroscopy, 48, 959968.CrossRefGoogle Scholar