Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T03:55:43.984Z Has data issue: false hasContentIssue false

Intergrowths of hexagonal and monoclinic pyrrhotites in some sulphide ores from norway

Published online by Cambridge University Press:  05 July 2018

Gu Lianxing
Affiliation:
Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, N-7034 Trondheim, Norway
Frank M. Vokes
Affiliation:
Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, N-7034 Trondheim, Norway

Abstract

Pyrrhotites in polished sections from more than twenty stratabound massive sulphide and magmatic nickel-copper deposits in Norway were studied under the microscope using the magnetic colloid method. In both types of deposits, two distinct styles of intergrowths between monoclinic and hexagonal pyrrhotites were found: crystallographically-controlled lamellar intergrowths and fissure-controlled irregular intergrowths.

Lamellar intergrowths consist of crystallographically oriented monoclinic lamellae occurring in a hexagonal matrix and were produced originally by exsolution from hexagonal pyrrhotite on cooling. Irregular intergrowths comprise blades and patches of monoclinic pyrrhotite occurring along fissures and grain boundaries of hexagonal pyrrhotite, and were formed by interactions between hexagonal grains and sulphur-rich hydrothermal solutions.

Increase in lamella thickness and spacing, development of lamella zonations, wedge-shaped composite ends, boxworks and composite lamellae were caused by progressive lamellae coarsening and maturation during natural annealing, which could have been promoted by anisotropic stress. Metamorphic recrystallization and annealing tend to homogenize pyrrhotite and erase preexisting exsolution lamellae.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Earth Sciences, Nanjing University, Nanjing 210008, P.R. China

References

Arnold, R.G. (1962) Equilibrium relations between pyrrhotite and pyrite from 3250 to 7430C. GeoL, 57, 7290.Google Scholar
Arnold, R.G. (1967) Range in composition and structure of 82 natural terrestrial pyrrhotites. Canad. Mineral, 9, 3150.Google Scholar
Arnold, R.G. (1969) Pyrrhotite phase relations below 304 ±6°C at <1 atm total pressure. Econ. Goel., 64, 405-19.CrossRefGoogle Scholar
Bennett, C.E.G., Graham, J. and Thornber, M.R. (1972) New observations on natural pyrrhotites, Part I. mineragraphic techniques. Amer. Mineral, 57, 445–62.Google Scholar
Bjørlykke, A., Grenne, T., Rui, I. and Vokes, F.M. (1980) A review of Caledonian stratabound sulphide deposits in Norway. Geol. Survey Ireland Spec. Paper, 5, 2946.Google Scholar
Boyd, R. and Mathiesen, C.O. (1979) The nickel mineralization of the Rana mafic intrusion, Nordland, Norway. Canad. Mineral., 17, 287–98.Google Scholar
Boyd, R. and Nixon, F. (1985) Norwegian nickel deposits: a review. In: Nickel-Copper Deposits of the Baltic Shield and Scandinavian Caledonides.(H. Papunen and G.I. Gorbunov, eds.) Geol. Surv. Finland, Bull., 333, 363–94.Google Scholar
Brady, J.B. (1987) Coarsening of fine-scale exsolution lamellae. Amer. Mineral, 72, 697706.Google Scholar
Brickwood, J.D. (1986) The geology and mineralogy of some Fe-Cu-Ni sulphide deposits in the Bamble area, Norway. Norsk geol. tidsskr., 66, 189208.Google Scholar
Bugge, J.W.A. (1978) Norway. In: Mineral Deposits of Europe, vol. 1, Northwest Europe(S.H.U. Bowie, A. Kvalheim and H.W. Haslam, eds.). Inst. Mining Metall./Min. Soc., London, 199246.Google Scholar
Byström, A. (1945) Monoclinic magnetic pyrites. Ark. Kemi Mineral. Geol, 19B, 18.Google Scholar
Carpenter, R.H. (1974) Pyrrhotite isograde in Southeastern Tennessee and Southwestern North Carolina. Geol. Soc. Amer. Bull, 85, 451–8.2.0.CO;2>CrossRefGoogle Scholar
Carpenter, R.H. and Desborough, B.A. (1964) Range in solid solution and structure of naturally occurring troilite and pyrrhotite. Amer. Mineral, 49, 1350–65.Google Scholar
Carstens, C.W. (1923) Der unterordovisische Vulkanhorizont in dem Trondhjemgebiet, mit besonderer Beriicksichtigung der in ihm auftretender Kiesvorkommen. Norsk geol. tidsskr., 7, 185270.Google Scholar
Cathles, L.M. (1993) A capless 350°C flow zone model to explain megaplumes, salinity variations, and high- temperature veins in ridge axis hydrothermal systems. Econ. Geol., 88, 1977–88.CrossRefGoogle Scholar
Clark, A.H. (1966) Stability field of monoclinic pyrrhotite: Trans. Inst. Mining Metall, Sect. B, 75, 232–5.Google Scholar
Clark, B.R. and Kelly, W.C. (1976) Experimental deformation of common sulphide minerals. In: The Physics and Chemistry of Minerals and Rocks(Strens, R.G.J., ed.). John Wiley & Sons, 5169.Google Scholar
Cook, N.J., Halls, C. and Boyle, A.P. (1993) Deformation and metamorphism of massive sulphides at Sulitjelma, Norway. Mineral Mag., 57, 6782.CrossRefGoogle Scholar
Cook, N.J., Halls, C. and Kaspersen, P. (1990) The geology of the Sulitjelma ore field, Northern Norway some new interpretations. Econ. Geol., 85, 1720–37.CrossRefGoogle Scholar
Craig, J.R. and Vaughan, D.J. (1981) Ore Microscopy and Ore Petrography.John Wiley & Sons Press, New York, 406 pp.Google Scholar
Craig, J.R. and Vokes, F.M. (1992) Ore mineralogy of the Appalachi an-Caledonian stratabound sulfide deposits. Ore Geol. Rev., 7, 77123.CrossRefGoogle Scholar
Craig, J.R. and Vokes, F.M. (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag., SI., 3-18.Google Scholar
Desborough, G.A. and Carpenter, R.H. (1965) Phase relations of pyrrhotite. Econ. Geol, 60, 1431–50.CrossRefGoogle Scholar
Durazzo, A. and Taylor, A. (1982) Exsolution in the mss-pentlandite system: textural and genetic implications for Ni-sulphide ores. Mineral. Deposita, 17, 313–32.Google Scholar
Fleet, M.E. and Macrae, N. (1969), Two-phase hexagonal pyrrhotites. Canad. Mineral., 9, 699-705.Google Scholar
Foslie, S. (1926) Norges svovelkisforekomster. Norges geol. unders.y, 127, 6970.Google Scholar
Grenne, T., Grammeltvedt, G. and Vokes, F.M. (1980) Cyprus-type sulphide deposits in the western Trondheim district, Central Norwegian Caledonides. In: Ophiolites(A. Panayiotou, ed.). Proc. Int. Ophiolite Symp., Cyprus 1979. — Repub. Cyprus, Minist. Agrig. Nat. Res., Geol. Surv. Dept., 727–13.Google Scholar
Grenne, T. (1989) The feeder zone to the L0kken ophiolite-hosted massive sulphide deposits and related mineralizations in the central Norwegian Caledonides. Econ. Geol., 84, 2173–95.CrossRefGoogle Scholar
Gribble, C.D. and Hall, A.J. (1992) Optical Mineralogy: Principles & Practice. University College London Press, 303 pp.CrossRefGoogle Scholar
Gu, Lianxing, Zheng, Sujuan and Lu, Jianjun (1988) The intergrowth and origin of pyrrhotite polymorphs in the South China-type massive sulfide deposit at Mashan, Anhui Province (in Chinese with an English abstract). Collections of Mineralogy and Petrology, 5, 21–8.Google Scholar
Gu, Lianxing, Hu, Wenxuan, He, Jinxian and Xu, Yaotong (1993) Geology and Genesis of the Upper Paleozoic Massive sulphide deposits in South China. Trans. Inst. Mining MetalLSect. B, 83-96.Google Scholar
Gu, Lianxing and McClay, K.R. (1992) Pyrite deformation in stratiform lead-zinc deposits of the Canadian Cordillera. Mineral. Deposita, 27, 169–81.Google Scholar
Joesten, R.L. (1991) Kinetics of coarsening and diffusion-controlled mineral growth. In Contact Metamorphism (Kerrick, D.M., ed.). BookCrafters Inc. 507–82.CrossRefGoogle Scholar
Kelly, D.P. and Vaughan, D.J. (1983) Pyrrhotine- pentlandite ore textures: a mechanistic approach, Mineral. Mag., 47, 453–63.CrossRefGoogle Scholar
Kissin, S.A. and Scott, S.D. (1982) Phase relations involving pyrrhotite below 350°C. Econ. GeoL, 77, 1739–54.CrossRefGoogle Scholar
Kübler, L. and Lindqvist, B. (1979) Tectonic control of pyrrhotite phase distribution studied on a fold structure. Lithos, 12, 241–9.CrossRefGoogle Scholar
Lalou, C., Reyss, J.L., Brichet, E., Arnold, M., Thompson, G., Fouquet, Y. and Rona, P. (1993) New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. J. Geophys. Res., 98, 9705–14.CrossRefGoogle Scholar
Lindahl, I. (1974) öknomisk geologi og prospektering i Vadclas - Rieppe feltet, Nord-Troms. Del. I: Geologi og malmgeologi. Unpubl. doc. thesis, Norw. Inst. Techn., Trondheim. 175 pp.Google Scholar
Lusk, J., Scott, S.D., and Ford, C.E. (1993) Phase relations in the Fe-Zn-S system to 5 Kbars and temperature between 325° and 150°C. Econ. GeoL, 88, 1880–903.CrossRefGoogle Scholar
MacDonald, K.C., Becker, K., Spiess, F.N. and Ballard, R.D. (1980) Hydrothermal heat flux of the (Black smoker5 vents on the East Pacific Rise. Earth Planet. Sci. Lett., 48, 17.CrossRefGoogle Scholar
Markham, N. and Stevens, B. (1982) Geology of the orebody and enclosing rocks. In Minerals of Broken Hill(H.K. Worner and R.W. Mitchell, eds.). Australian Mining & Smelting Limited, Melbourne, 42—9.Google Scholar
McClay, K.R. and Ellis, P.G. (1983) Deformation and recrystallization of pyrite. Mineral. Mag., 47, 527–38.CrossRefGoogle Scholar
Missack, E., Staffers, P. and Goresy, A. El (1989) Mineralogy, parageneses, and phase relations of copper-iron sulfides in the Atlantis II deep, Red Sea. Mineral. Deposita, 24, 8291.CrossRefGoogle Scholar
Nakazawa, H. and Morimoto, N. (1970) Pyrrhotite phase relations below 320°C. Proc. Japan Acad., 46, 678–83.CrossRefGoogle Scholar
Nakazawa, H. and Morimoto, N. (1971) Phase relations and superstructures of pyrrhotite, Fei_xS. Mat. Res. Bull., 6, 345–58.CrossRefGoogle Scholar
Naldrett, A.J., Craig, J.R. and Kullerud, G.A. (1967) The central portion of the Fe-Ni-S system and its bearing on pentlandite exsolution in iron-nickel sulphide ores. Econ. GeoL, 62, 826–47.CrossRefGoogle Scholar
Reinsbakken, A. (1986a) The Gjersvik Cu-Zn massive sulphide deposit in a bimodal metavolcanic sequence, In: Stratabound Sulphide Deposits in the Central Scandinavian Caledonides(M.B. Stephens, ed.). Sveriges geol. unders., Ser. Ca.No. 60, 5068.Google Scholar
Reinsbakken, A. (1986b) The Joma Cu-Zn massive sulphide deposit hosted by mafic metavolcanites. In: Stratabound Sulphide Deposits in the Central Scandinavian Caledonides (Stephens, M.B., ed.). Sveriges geol. unders., Ser. Ca.No. 60, 45-9.Google Scholar
Rekstad, J. (1921) Eidsberg (Geology within the Eidsberg 1:100 000 rectangle). Norges geol. unders., 88, 76 pp.Google Scholar
Robin, P.-Y.F. (1974) Thermodynamic equilibrium across a coherent interface in a stressed crystal. Amer.Mineral. 59, 1286-98.Google Scholar
Sand, K. (1986) A study of Paleozoic Iron Formations in the Central Norwegian Caledonides.Geol. Inst., Univ. Trondheim-Norges tekn. høgsk. Rpt. 23 (b), 23 pp.Google Scholar
Scott, S.D., Both, R. A. and Kissin, S.A. (1977) Sulfide petrology of the Broken Hill region, New South Wales. Econ. Geol., 72, 1410–25.CrossRefGoogle Scholar
Spry, A. (1969) Metamorphic Textures. Pergamon Press, Oxford, 350 pp.Google Scholar
Stanton, R.L. (1972) Ore Petrology. McGraw-Hill, New York, 713 pp.Google Scholar
Stephens, M.B., Swinden, H.S. and Slack J.F. (1984) Correlation of massive sulphide deposits in the Applachian-Caledonian Orogen on the basis of Paleotectonic setting. Econ. Geol., 79, 1442–78.CrossRefGoogle Scholar
Sugaki, A., Shima, A., Kitakaze, A. and Fukuoka, M. (1977) Hydrothermal synthesis of pyrrhotites and their phase relation at low temperature. Studies on the pyrrhotite group minerals (4). Tohoku Univ. Sci. Rept, ser.3, 13, 165–82.Google Scholar
Vaughan, D.J., Schwarz, E.J. and Owens, D.R. (1971) Pyrrhotites from the Strathcona mine, Sudbury, Canada: a thermomagnetic and mineralogical study. Econ. Geol., 66, 1131-44.CrossRefGoogle Scholar
Vaughan, D.J. and Craig J.R. (1978) Mineral Chemistry of Metal Sulphides. Cambridge University Press. 492 pp.Google Scholar
Vokes, F.M. (1957) The copper deposits of the Birtavarre district, Troms, Northern Norway. Norges geol. unders., 199, 239 pp.Google Scholar
Vokes, F.M. (1962) Mineral paragenesis of the massive sulphide ore bodies of the Caledonides of Norway. Econ. Geol., 57, 890903.CrossRefGoogle Scholar
Vokes, F.M. (1963) Geological studies on the Caledonian pyritic zinc-lead orebody at Bleikvassli, Nordland, Norway; Norges geol. unders., 222, 126 pp.Google Scholar
Vokes, F.M. (1968) Regional metamorphism of the Paleozoic geosynclinal sulphide ore deposits of Norway. Trans. Inst. Mining. Metall. Sect. B. 53–9.Google Scholar
Vokes, F.M. (1976) Caledonian massive sulphide deposits in Scandinavia: A comparative review, In Handbook of Stratabound and Stratiform Ores(Wolf, H., ed.). Elsevier, Amsterdam, 79127.Google Scholar
Vokes, F.M. (1988) Latest Proterozoic and Phanerozoic metallogeny in Fennoscandia. Procs. 7th Quadr. IAGOD Symp., 41-58.Google Scholar
Von Gehlen, K. (1963) Pyrrhotite phase relations at low temperatures. Carnegie Inst. Wash. Year Boole., 62, 213–4.Google Scholar
Yund, R.A. and Davidson, P. (1978) Kinetics of lamellar coarsening in cryptoperthites. Amer. Mineral, 63, 470–7.Google Scholar
Yund, R.A. and Hall, H.T. (1969) Hexagonal and monoclinic pyrrhotites. Econ. Geol., 64, 420–3.CrossRefGoogle Scholar
Yund, R.A. and Hall, H.T. (1970) Kinetics and mechanism of pyrite exsolution from pyrrhotite. J. Petrol, 11, part 2, 381404.CrossRefGoogle Scholar
Yund, R.A., McLaren, A.C. and Hobbs, B.E. (1974) Coarsening kinetics of exsolution microstructure in alkali feldspar. Contrib. Mineral Petrols, 48, 4555.CrossRefGoogle Scholar
Zhang, Zhengen, Li, Xilin and Chen, Guoxi (1976) A study of hexagonal and monoclinic pyrrhotites and their distinctive characteristics in a mining district, Guangxi Province (in Chinese with an English abstract). Geochemicano. 1, 54-63.Google Scholar