Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T22:16:52.851Z Has data issue: false hasContentIssue false

Granites and hydrothermal ore deposits: a geochemical framework

Published online by Cambridge University Press:  05 July 2018

Hans P. Eugster*
Affiliation:
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA

Abstract

The geochemical evolution of tin-tungsten deposits and their associated sulphides can be discussed in terms of four sequential processes: acquisition of the ore-forming elements (OFEs) by the granitic magma, emplacement of these elements in minerals and residual melt of the crystallizing granite, release of the OFEs to the circulating hydrothermal fluids and transport to the depositional sites, and finally, deposition of ore minerals through interaction of these fluids with the wall rock. Based on their crystallographic behaviour, it is useful to distinguish three principal classes of OFEs, here identified as BOC, LHC, and ALC elements. BOC (bivalent octahedral cation) elements are similar to ferrous iron and here are represented mainly by Zn, Mn, and perhaps Cu. Li also belongs to this class, although it is monovalent. LHC (large highly charged cations) elements encompass As, Nb, Mo, Sn, Sb, Ta, and W and they are similar to ferric iron or titanium in their crystallographic role. ALC (alkali-like cations) are capable of occupying alkali positions and are represented mainly by Pb, Ag, and Hg.

LHCs are rejected from the polymerized silicate liquid network and become enriched in the roof of the acid magma chamber, where more non-bridging oxygens are available. Transport to the roof may be enhanced by the formation of hydrous complexes, as is the pronounced enrichment of Na and Li. BOCs, along with Cl, F, and B, fractionate strongly into the vapour phase during vesiculation. HCl in the ore fluid is crucial for the alteration process and can be produced during boiling by a hydrolysis reaction of the NaCl dissolved or immiscibly present in the silicate magma.

Considerable laboratory information is available concerning release mechanisms of the OFEs to hydrothermal fluids. We can distinguish congruent and incongruent dissolution, both in response to acid buildup, as well as congruent and incongruent exchange not involving HCl. Melt-fluid fractionation is also thought to be important, though the physical mechanisms are not well understood. Any of these release mechanisms may be coupled with reduction or oxidation reactions. LHC, BOC, and ALC elements respond differently to each of these mechanisms, and these differences may in part be responsible for the observed separation of ore minerals in space and time. It is suggested that LHC elements are released preferentially during acid, non-oxidizing conditions typical of early stages, while BOC elements respond more readily to later acid-oxidizing environments, as well as exchange reactions with or without oxidation.

Depositional reactions have been formulated with respect to two contrasting types of country rocks: carbonates and schists. Differences are related to the process of neutralization of the HCl produced by ore deposition: carbonate dissolution on one hand and feldspar-muscovite or biotite-muscovite conversion on the other. In carbonate rocks, evaporite-related sulphates may provide the H2S necessary for sulphide precipitation, while in schists disseminated sulphides and organic matter may be important sulphur reservoirs in addition to the sulphur liberated from the granite. A variety of situations can be envisaged with respect to the sources of the OFEs and the sulphur species required for ore deposition, including granite and wall rocks. Chloride is recognized as the crucial anion for OFE release, transport, and deposition, although F and B play a role yet to be evaluated. Final HCl neutralization is an essential step in the reactions responsible for the deposition of ore minerals.

The ultimate sources of the OFEs must be related to the continental material involved in the process of melt production by partial melting. Oxidized sediments provide sources for LHC and ALC elements in the form of heavy minerals and clastic feldspars and micas. Organic-rich reduced sediments are hosts to BOC and LHC elements as sulphides and ALC elements in organic matter. Remelting of igneous and metamorphic rocks can enrich LHC, BOC, and ALC elements in the melt by extraction from opaques, Fe-Mg silicates, feldspars, and micas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G. M. (1973) Econ. Geol. 68, 480-92.Google Scholar
Bacon, C. R., Macdonald, R., Smith, R. L., and Baedecker, P. A. (1981) J. Geophys. Res. 86, 10223-41.Google Scholar
Bailey, D. K., and Macdonald, R. (1975) Mineral. Mag. 40, 405-14.Google Scholar
Banks, N. G. (1974) J. Res. U.S. Geol. Surv. 2, 195-211.Google Scholar
Barnes, H. L., ed. (1979) Geochemistry of Hydrothermal Ore Deposits. New York, John Wiley, 798 pp.Google Scholar
Barrett, T. J., and Anderson, G. M. (1982) Econ. Geol. 77, 1923-33.Google Scholar
Barsukov, V. L. (1957) Geochem. 1, 41-52.Google Scholar
Bryzgalin, O. V. (1976) Geochem. Int. 13, 155-9.Google Scholar
Burnham, C. W. (1979) In Geochemistry of Hydrothermal Ore Deposits (Barnes, H. L., ed.). New York, John Wiley, 71136.Google Scholar
Burnham, C. W. (1981) Arizona Geol. Sac. Digest, 14, 71-7.Google Scholar
Burnham, C. W. and Ohmoto, H. (1980) In Granitic Magmatism and Related Mineralization (Ishihara, S. and Takenouchi, S., eds.) Mining Geology Japan Spec. Issue 8, 1-11.Google Scholar
Candela, P. A., and Holland, H. D. (1984) Geochim. Cosmochim. Acta, 48, 373-80.Google Scholar
Chou, I-M., and Eugster, H. P. (1977) Am. J. Sci. 277, 1296-314.Google Scholar
Chivas, A. R. (1981) Contrib. Mineral. Petrol. 78, 389-403.Google Scholar
Chivas, A. R., Bikun, J. V., Sheridan, M. F., and Burt, D. M. (1984) Am. Mineral. 69, 223-36.Google Scholar
Christiansen, E. H., Butt, D. M., Sheridan, M. F., and Wilson, R. T. (1984) Contrib. Mineral. Petrol. 83, 16-30.Google Scholar
Clark, A. H., Palma, V. V., Archibald, D. A., Farrar, E., Arenas, M. J. F., and Robertson, R. C. R. (1983) Econ. Geol. 78, 514-20.Google Scholar
Collins, P. L. F. (1981) Ibid. 76, 365-92.Google Scholar
Creeraft, H. R., Nash, W. P., and Evans, S. H. (1981) J. Geophys. Res. 86, 10303-20.Google Scholar
Crerar, D. A., and Barnes, H. L. (1976) Econ. Geol. 71, 772-94.Google Scholar
Crerar, D. A., Susak, N. J., Boresik, M., and Schwartz, S. (1978) Geochim. Cosmochim. Acta 42, 1427-37.Google Scholar
Disnar, J. R. (1981) Ibid. 45, 363-79.Google Scholar
Durasova, N. A. (1967) Geochem. Int. 4, 671-81.Google Scholar
Eadington, P. J. (1983) Hydrothermal Reactions (Somiya, S., ed.). Tokyo, 335-45.Google Scholar
Eugster, H. P. (1981) Chemistry and geochemistry of solutions at high temperature and pressure: Physics and Chemistry of the Earth (Wickman, F. E. and Richard, D. T., eds.). New York, Pergamon Press, 13 and 14, 461507.Google Scholar
Eugster, H. P. (1982) High-Pressure Researches in Geoscience (Schreyer, W., ed.). Stuttgart, Schweizerbart, 501-18.Google Scholar
Eugster, H. P. (1983) Geol. Sac. Am. Abstracts with Programs, 568.Google Scholar
Eugster, H. P. and Chou, I-Ming (1979) Econ. Geol. 74, 763-74.Google Scholar
Eugster, H. P. and Gunter, W. D. (1981) Bull. Mineral. 104, 817-26.Google Scholar
Eugster, H. P. and Ilton, E. S. (1983) Adv. Phys. Geoch. (Saxena, S. and Thompson, A. B., eds.). Springer-Verlag, 3, 115-40.Google Scholar
Eugster, H. P. and Jones, B. F. (1979) Am. d. Sci, 279, 609-31.Google Scholar
Evans, A. M. (1982) Metallization associated with acid magmatism, John Wiley, New York, 385 pp.Google Scholar
Frantz, J. D., and Marshall, W. L. (1982) Am. J. Sci. 282, 1666-93.Google Scholar
Eugster, H. P. and Eugster, H. P. (1973) Ibid. 273, 268-86.Google Scholar
Fryer, B. J., and Edgar, A. D. (1977) Contrib. Mineral. Petrol. 61, 35-48.Google Scholar
Gilzean, M. N., and Brimhall, G. H. (1983) Geol. Soc. Am. Abstracts with Programs, 581.Google Scholar
Graybeal, F. T. (1973) Econ. Geol. 68, 785-98.Google Scholar
Groves, D. I. (1972) Ibid. 67, 445-57.Google Scholar
Groves, D. I. (1977) Tasmania Geol. Survey Bull. 55, 7-116.Google Scholar
Gunow, A. J., Ludington, S. and Munoz, J. L. (1980) Econ. Geol. 75, 1127-37.Google Scholar
Gunter, W. D., and Eugster, H. P. (1978) Contrib. Mineral. Petrol. 66, 271-81.Google Scholar
Gunter, W. D. (1980) Ibid. 75, 235-50.Google Scholar
Haapala, I., and Kinnunen, K. (1979) Econ. Geol. 74, 1231-8.Google Scholar
Handy, A. H., and Hahl, D. C. (1966) Utah Geol. Soc. Guidebook 20, 135-51.Google Scholar
Helgeson, H. C., and Kirkham, D. H. (1974) Am. J. Sci. 274, 1089-98.Google Scholar
Hemley, J. J. (1959) Ibid. 257, 241-70.Google Scholar
Hemley, J. J. and Jones, W. R. (1964) Econ. Geol. 59, 538-69.Google Scholar
Hildreth, W. (1979) Geol. Sac. Am. Sp. Pap. 180, 4375.Google Scholar
Holland, H. D. (1972) Econ. Geol. 67, 281301.Google Scholar
lshihara, S., ed. (1980) Granitic Magmatism and Related Mineralization. Japan Soc. Mining Geol. Spec. Issue 8, Tokyo, 247 pp.Google Scholar
lshihara, S. (1981) Econ. Geol. 75th Ann. Vol., 458-84.Google Scholar
Jackson, N. J., Halliday, A. N., Sheppard, S. M. F., and Mitchell, J. G. (1982) In Metallization Associated with Acid Magmatism (Evans, A. M., ed.). John Wiley, New York, 137-79.Google Scholar
Kelly, W. C., and Rye, R. O. (1979) Econ. Geol. 74, 1721-819.Google Scholar
Kelly, W. C. and Turneaure, E. S. (1970) Ibid. 65, 609-80.Google Scholar
Kilinc, I. A., and Burnham, C. W. (1972) Ibid. 67, 2315.Google Scholar
Koster Van Groos, A. F., and Wyllie, P. J. (1969) J. Geol. 77, 581605.Google Scholar
Krauskopf, K. B. (1970) Tungsten. In Handbook of Geochemistry 74-F. (Wedepohl, K. H., ed.). New York, Springer-Verlag.Google Scholar
Kwak, T. A. P., and Askins, P. W. (1981a) Geol. Soc. Austral. 28, 123-36.Google Scholar
Kwak, T. A. P., and Askins, P. W. (1981b) Econ. Geol. 76, 439-67.Google Scholar
Kwak, T. A. P. and Tan, T. H. (1981) Ibid. 76, 955-60.Google Scholar
Lehmann, J. D. (1982) Ibid. 77, 50-69.Google Scholar
Lowell, J. D., and Guilbert, J. M. (1970) Ibid. 65, 337-408.Google Scholar
Mahood, G. (1981) Contrib. Mineral. Petrol. 77, 129-49.Google Scholar
Mahood, G. and Hildreth, W. (1983) Geochim. Cosmochim. Acta, 47, 1130.Google Scholar
Manning, D. A. C. (1981) Contrib. Mineral. Petrol. 76, 206-15.Google Scholar
Mercolli, I., Schenker, F., and Stalder, H. A. (In press) Geochemie der Veranderungen von Granit durch hydrothermale Lösungen. Schweiz. Mineral. Petrol. Mitt.Google Scholar
Munoz, J. L., and Eugster, H. P. (1969) Am. Mineral. 54, 943-59.Google Scholar
Munoz, J. L. and Ludington, S. D. (1974) Am. J. Sci. 274, 396413.Google Scholar
Munoz, J. L. and Swenson, A. (1981) Econ. Geol. 76, 2212-21.Google Scholar
Neiva, A. M. R. (1982) In Metallization associated with acid magmatism. (Evans, A. M., ed.). New York, John Wiley, 243-59.Google Scholar
Newnham, L. A. (1975) In Economic Geology of Australia and Papua, New Guinea, 1, Metals. (Knight, C. L., ed.). Melbourne, Australian Inst. Mining Metallurgy, Mon. 5, 581-4.Google Scholar
Nriagu, J. O., and Anderson, G. M. (1971) Chem. Geol. 7, 171-83.Google Scholar
Patterson, D. J., Ohmoto, H., and Solomon, M. (1981) Econ. Geol. 76, 393438.Google Scholar
Pollard, P. J., Taylor, R. G., and Coff, C. (1983) Ibid. 78, 543-5.Google Scholar
Rettig, S. L., Jones, B. F., and Risacher, F. (1980) Chem. Geol. 30, 57-79.Google Scholar
Richardson, C. K., and Holland, H. D. (1979) Geochim. Cosmochim. Acta, 43, 1313-25.Google Scholar
Ryabchikov, I. D., Orlova, G. P., Efimov, A. S., and Kalenchuk, G. E. (1980) Geokhimia, 8, 1320-6.Google Scholar
Ryabchikov, I. D., Rekharsky, V. I., and Kudrin, A. V. (1981) Ibid. 9, 12436.Google Scholar
Ryerson, J. J., and Hess, P. C. (1978) Geochim. Cosmochim. Acta, 42, 921-32.Google Scholar
Schulien, S. (1980) Contrib. Mineral. Petrol. 74, 85-93.Google Scholar
Seward, T. M. (1976) Geochim. Cosmochim. Acta, 40, 1329-41.Google Scholar
Seward, T. M. (1984) Ibid. 48, 121-34.Google Scholar
Shade, J. W. (1974) Econ. Geol. 69, 218-28.Google Scholar
Shelton, K. L., and So, C. S. (1983) Geol. Soc. Am. Abstracts with Programs, 685.Google Scholar
Sillitoe, R. H., Halls, C., and Grant, J. N. (1975) Econ. Geol. 70, 913-27.Google Scholar
Simmons, S. F., and Sawkins, F. J. (1983) Ibid. 78, 521-6.Google Scholar
So, C.-H., Shelton, K. L., and Rye, D. M. (1983) Ibid. 78, 157-63.Google Scholar
Strubel, G., and Schaefer, B. (1975) Geochemie der Lager-stattenbildung und -prospektion, GDMB-DMG Symposium, Feb. 1974, Karlsruhe.Google Scholar
Sweeton, F. G., and Baez, C. F. (1970) J. Chem. Thermo-dyn. 2, 479500.Google Scholar
Taylor, R. G. (1979) Geology of tin deposits: Devel. Econ. Geol. 11. New York, Elsevier, 543 pp.Google Scholar
Taylor, R. P., Strong, D. F., and Fryer, B. J. (1981) Contrib. Mineral. Petrol. 77, 267-71.Google Scholar
Tremaine, P. R., and LeBlanc, J. C. (1980) J. Sol. Chem. 9, 415-42.Google Scholar
Wang, S., Eugster, H. P., and Wilson, G. A. (1984) Geol. Soc. Am. Abstracts with Programs, 686.Google Scholar
Watson, E. B. (1976) Contrib. Mineral. Petrol. 56, 119-34.Google Scholar
Wedepohl, K. H. (1969) Handbook of Geochemistry. New York, Springer-Verlag.Google Scholar
Wesoloski, D., Drummond, S. E., Mesmer, R. E., and Ohmoto, H. (In press) Geochim. Cosmochim. Acta.Google Scholar
Wilson, C. A., and Eugster, H. P. (1984) Geol. Soc. Am. Abstracts with Programs, 696.Google Scholar
Wilson, C. A., Neiva, A. M. R., Cotelo Neiva, J. M., Wang, S. Y., and Zhang, C. K. (1983) Geol. Ass. Canada meeting, Vancouver 1983.Google Scholar
Yurchenko, N. E., Kolonin, G. R., Shironosova, G. P., and Aksenova, T. P. (1976) Russ. J. Inorg. Chem. 21, 1682-5.Google Scholar
Zaw, U. K., and Thet, D. K. M. (1983) Econ. Geol. 78, 530-4.Google Scholar
Zhang, Z., and Xilin, L. (1981) Geochemica, 1, 74-86.Google Scholar