Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T09:43:49.171Z Has data issue: false hasContentIssue false

Geochemistry of spinel peridotite inclusions in basalts from Sardinia

Published online by Cambridge University Press:  05 July 2018

C. Dupuy
Affiliation:
Centre Géologique et Géophysique, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier, France
J. Dostal
Affiliation:
Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
J. L. Bodinier
Affiliation:
Centre Géologique et Géophysique, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier, France

Abstract

The spinel peridotite inclusions in basalts from Sardinia are upper-mantle residues affected by metasomatism which led to an enrichment particularly of U and light REE. The metasomatism took place prior to the recrystallization which produced the primary mineral assemblage of the inclusions. The compositional variations imply that the xenoliths are residual after at least two melting events.

Type
Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque, C.A. R., Capedri, S. and Dostal, J. (1977) Mineralogy of spinel peridotite inclusions of alkali basalts from Sardinia. Geol. Soc. Am. Bull. 88, 1493-6.2.0.CO;2>CrossRefGoogle Scholar
Aoki, K. and Suwa, J. (1977) Major element geochemistry of peridotite nodules from Samburu district, Kenya. J. Japan. Assoc. Min. Pet. Econ. Geol. 72, 173-9.CrossRefGoogle Scholar
De Paolo, D.J. (1983) Geochemical evolution of the crust and mantle. Rev. Geophys. Space Phys. 21, 1347-58.CrossRefGoogle Scholar
Dostal, J. and Capedri, S. (1976) Uranium in spinel peridotite inclusions in basalts from Sardinia. Contrib. Mineral. Petrol. 54, 245-54.CrossRefGoogle Scholar
Dostal, J., Dupuy, C., Carron, J.P., Le Guen De Kerneizon, M. and Maury, P.C. (1983) Partition coefficients of trace elements: application to volcanic rocks of St. Vincent, West Indies. Geochim. Cosmochim. Act. 97, 525-33.CrossRefGoogle Scholar
Dupuy, C. and Leblanc, M. (1984) Distribution of V, Ni, Co, Cu, and Zn in chromites from New Caledonia ophiolites. In Symposium on metallogeny of mafic and ultramafic complexes (L. Arhens, ed.) 46-60.Google Scholar
Dupuy, C., Dostal, J., Dautria, S.N. and Girod, M. (1986) Geochemistry of spinel peridotite inclusions in basalts from Hoggar, Algeria. J. African Earth Sci. (in press).CrossRefGoogle Scholar
Frey, F.A. (1983) Rare earth element abundances in upper mantle rocks. In Rare Earth Element Geochemistry (P. Henderson, ed.) Elsevier, Amsterdam, 1953-203.Google Scholar
Frey, F.A. and Green, D.H. (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Act. 38, 1023-59.CrossRefGoogle Scholar
Frey, F.A. and Prinz, N. (1978) Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci. Lett. 38, 129-76.CrossRefGoogle Scholar
Griffin, W.L., Wass, S.Y. and Hollis, D. (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: Petrology of a sub-continental crust-mantle transition. J. Petrol. 25, 53-87.CrossRefGoogle Scholar
Irving, A.J. (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. Am. J. Sci. 280A, 389426.Google Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. and Wanke, H. (1979) The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. Proc. lOth Lunar Planet. Sci. Conf., 2031-50.Google Scholar
Liotard, J.M. and Dupuy, C. (1980) Partage des 616- ments de transition entre clinopyrox6ne et orthopyrox∼ne-variations avec la nature des roches. Chem. Geol. 28, 307-19.CrossRefGoogle Scholar
Maaloe, S. and Aoki, K. (1977) The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib. Mineral. Petrol. 63, 161-73.CrossRefGoogle Scholar
Menzies, M. (1983) Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In Continental Basalts and Mantle Xenoliths (C. J. Hawkesworth and M. J. Norry, eds.) Shiva Geology Series, Exeter, 92-110.Google Scholar
Nagasawa, H., Wakita, H., Higuchi, H. and Onuma, N. (1969) Rare earths in peridotite nodules: and explanation of the genetic relationship between basalt and peridotite nodules. Earth Planet Sci. Lett. 5, 377-81.CrossRefGoogle Scholar
Ray, G.L., Shimizu, N. and Hart, S.R. (1983) An ion microprobe study of the partitioning of trace elements between clinopyroxene and liquid in the system diopside-albite-anorthite. Geochim. Cosmochim. Act. 47, 2131-40.CrossRefGoogle Scholar
Savoyant, L., Persin, F. and Dupuy, C. (1984) Determination des Terres Rares dans certaines roches basiques et ultrabasiques. Geostandards Newslette. 8, 159-61.CrossRefGoogle Scholar
Shaw, D.M. (1970) Trace elements fractionation during anatexis. Geochim. Cosmochim. Act. 34, 237-42.CrossRefGoogle Scholar
Stosch, H.G. (1981) Sc, Cr, Co and Ni partitioning between minerals from spinel peridotite xenoliths. Contrib. Mineral. Petrol. 78, 166-74.CrossRefGoogle Scholar
Stosch, H.G. and Seck, H.A. (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dresier Weiher, West Germany. Geochim. Cosmochim. Act. 44, 457-70.CrossRefGoogle Scholar
Tracy, R.J. (1980) Petrology and genetic significance of an ultramafic suite from Tahiti. Earth Planet. Sci. Lett. 48, 80-96.CrossRefGoogle Scholar