Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T22:47:04.080Z Has data issue: false hasContentIssue false

Geochemical fingerprints of brannerite (UTi2O6): an integrated study

Published online by Cambridge University Press:  03 February 2020

Marion Turuani
Affiliation:
Chrono-environnement, UMR 6249, CNRS-Université de Bourgogne Franche-Comté, Besançon, France Université de Lyon, UJM-Saint-Etienne, CNRS, UCA, IRD, LMV UMR 6524, Saint-Etienne, France
Flavien Choulet*
Affiliation:
Chrono-environnement, UMR 6249, CNRS-Université de Bourgogne Franche-Comté, Besançon, France
Aurélien Eglinger
Affiliation:
GeoRessources, Université de Lorraine-CNRS-CREGU, 54500Nancy, France
Philippe Goncalves
Affiliation:
Chrono-environnement, UMR 6249, CNRS-Université de Bourgogne Franche-Comté, Besançon, France
Julie Machault
Affiliation:
Chrono-environnement, UMR 6249, CNRS-Université de Bourgogne Franche-Comté, Besançon, France
Julien Mercadier
Affiliation:
GeoRessources, Université de Lorraine-CNRS-CREGU, 54500Nancy, France
Anne-Magali Seydoux-Guillaume
Affiliation:
Université de Lyon, UJM-Saint-Etienne, CNRS, UCA, IRD, LMV UMR 6524, Saint-Etienne, France Université de Lyon, UCBL, ENSL, CNRS, LGL-TPE, 69622Villeurbanne, France
Stephanie Reynaud
Affiliation:
Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023Saint-Etienne, France
Fabien Baron
Affiliation:
LPG UMR6112 Université de Nantes – CNRS, Nantes, France
Daniel Beaufort
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA Bât. B35, rue Michel Brunet, 86073Poitiers Cedex 9, France
Yann Batonneau
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA Bât. B35, rue Michel Brunet, 86073Poitiers Cedex 9, France
Sophie Gouy
Affiliation:
GET, UMR 5563 CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400Toulouse, France
Adel Mesbah
Affiliation:
CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, Saint-Paul-lez-Durance, France
Stéphanie Szenknect
Affiliation:
CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, Saint-Paul-lez-Durance, France
Nicolas Dacheux
Affiliation:
CEA, CNRS, Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire des Interactions Protéine Métal, Saint-Paul-lez-Durance, France
Virginie Chapon
Affiliation:
CSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule - Bât. 426, BP 17171, 30207Bagnols-sur-Cèze, France
Maurice Pagel
Affiliation:
GEOPS, Univ Paris Sud, CNRS, Université Paris-Saclay, Rue du Belvédère, Bât. 504, OrsayF-91405, France
*
*Author for correspondence: Flavien Choulet, Email: flavien.choulet@univ-fcomte.fr

Abstract

Brannerite (UTi2O6) is among the major uranium-bearing minerals found in ore deposits, however as it has been long considered as a refractory mineral for leaching it is currently disregarded in ore deposits. Brannerite is found in a variety of geological environments with the most common occurrences being hydrothermal and pegmatitic. On the basis of scanning electron microscopy observations coupled with electron probe micro-analyses and laser ablation inductively-coupled plasma mass spectrometer analyses, this study describes the morphological features and the major- and trace-element abundances of brannerite samples from five hydrothermal and five pegmatitic localities across the world. Mineral compositions are also compared with observations from transmission electron microscopy and Raman spectrometry showing that brannerite is amorphous. Significant results include the definition of substitution trends and REE patterns, which are characteristics of either an occurrence or genetic type (hydrothermal and pegmatitic). Hence, in combination, it is possible to obtain reliable constraints for establishing a geochemical classification of brannerite. Inferred fingerprints have direct implications for forensic science and the exploration industry; they also contribute to a better understanding of metallogenic processes and to optimising the extraction of uranium.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Jason Harvey

References

Belissont, R., Boiron, M.-C., Luais, B. and Cathelineau, M. (2014) LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac–Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica Cosmochimica Acta, 126, 518540.CrossRefGoogle Scholar
Bonne, M., Pronier, S., Batonneau, Y., Can, F., Courtois, X., Royer, S., Marécot, P. and Duprez, P. (2010) Surface properties and thermal stability of SiO2-crystalline TiO2 nano-composites. Journal of Materials Chemistry, 20, 9205, https://doi.org//10.1039/c0jm01184cCrossRefGoogle Scholar
Branche, G., Chervet, J. and Guillemin, C. (1952) Nouvelles Espèces Uranifères Françaises. Commissariat à l'Énergie Atomique, Report 128, Fontenay-aux-Roses, France.Google Scholar
Charalambous, F.A. (2013) Synthesis Characterisation and Dissolution of Brannerite. A Uranium Titanate Mineral. PhD Dissertation RMIT University Melbourne Australia.Google Scholar
Charalambous, F.A., Ram, R., Tardio, J. and Bhargava, S.K. (2010) Characterisation and dissolution studies on various forms of brannerite. Pp. 597608 in: Proceedings of the Third International Conference on Uranium 40th Annual Hydrometallurgy Meeting. Saskatoon Canada August 2010.Google Scholar
Charalambous, F.A., Ram, R., Pownceby, M.I., Tardio, J. and Bhargava, S.K. (2012) Chemical and microstructural characterisation studies on natural and heat treated brannerite samples. Minerals Engineering, 39, 276288.CrossRefGoogle Scholar
Charalambous, F.A., Ram, R., McMaster, S., Tardio, J. and Bhargava, S.K. (2013) An investigation on the dissolution of synthetic brannerite (UTi2O6). Hydrometallurgy, 139, 18.CrossRefGoogle Scholar
Charalambous, F.A., Ram, R., McMaster, S., Pownceby, M.I., Tardio, J. and Bhargava, S.K. (2014) Leaching behaviour of natural and heat treated brannerite-containing uranium ores in sulphate solutions with iron (III). Minerals Engineering, 57, 2535.CrossRefGoogle Scholar
Colella, M., Lumpkin, G.R., Zhang, Z., Buck, E.C. and Smith, K.L. (2005) Determination of the uranium valence state in the brannerite structure using EELS XPS and EDX. Physics and Chemistry of Minerals, 32, 5264.CrossRefGoogle Scholar
Copeland, P., Harrison, T.M., Hodges, K.V., Maruéjol, P., Lefort, P. and Pecher, A. (1991) An early pliocène thermal disturbance of the main central thrust central Nepal: Implications for Himalayan tectonics. Journal of Geophysical Research, 96, 84758500.CrossRefGoogle Scholar
Cuney, M. and Friedrich, M. (1987) Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis. Bulletin de Minéralogie, 110, 235247.CrossRefGoogle Scholar
Ditz, R., Sarbas, B., Schubert, P. and Töpper, W. (1990) Th Thorium – Natural Occurrence. Minerals (Excluding Silicates). Springer–Verlag Berlin Heidelberg, 392 pp.Google Scholar
Duran, C.J., Seydoux-Guillaume, A.-M., Bingen, B., Gouy, S., de Parseval, P., Ingrin, J. and Guillaume, D. (2016) Fluid-mediated alteration of (Y,REE,U,Th)–(Nb,Ta,Ti) oxide minerals in granitic pegmatite from the Evje-Iveland district southern Norway. Mineralogy and Petrology, 110, 581599.CrossRefGoogle Scholar
Eglinger, A., André-Mayer, A.-S., Vanderhaeghe, O., Mercadier, J., Cuney, M., Decrée, S., Feybesse, J.-L. and Milesi, J.-P. (2013) Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle. Ore Geology Reviews, 54, 197213.CrossRefGoogle Scholar
Finnie, K.S., Zhang, Z., Vance, E.R. and Carter, M.L. (2003) Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies. Journal of Nuclear Materials, 317, 4653.CrossRefGoogle Scholar
Förster, H.-J. (1999) The chemical composition of uraninite in Varsican granites of the Erzgebirge Germany. Mineralogical Magazine, 63, 239252.CrossRefGoogle Scholar
Frimmel, H.E., Schedel, S. and Brätz, H. (2014) Uraninite chemistry as forensic tool for provenance analysis. Applied Geochemistry, 48, 104121.CrossRefGoogle Scholar
Gilligan, R. and Nikoloski, A.N. (2015a) The extraction of uranium from brannerite – a literature review. Minerals Engineering, 71, 3448.CrossRefGoogle Scholar
Gilligan, R. and Nikoloski, A.N. (2015b). Leaching of brannerite in the ferric sulphate system. Part 1: kinetics and reaction mechanism. Hydrometallurgy, 156, 7180.CrossRefGoogle Scholar
Giuliani, G., France-Lanord, C., Coget, P., Schwarz, D., Cheilletz, A., Branquet, Y., Giard, D., Pavel, A., Martin-Izard, A. and Piat, D.H. (1998) Oxygen isotope systematic of emerald: relevance for its origin and geological significance. Mineralium Deposita, 33, 513519.CrossRefGoogle Scholar
Giuliani, G., Fallick, A.E., Garnier, V., France-Lanord, C., Ohnenstetter, D. and Schwarz, D. (2005) Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology, 33, 249252.CrossRefGoogle Scholar
Gogoleva, E.M. (2012) The leaching kinetics of brannerite ore in sulfate solutions with iron(III). Journal of Radioanalytical and Nuclear Chemistry, 293, 185191.CrossRefGoogle Scholar
Goldney, L.H., Canning, R.G. and Gooden, J.E.A. (1972) Extraction investigations with some Australian uranium ores. Pp. 118 in: AAEC Symposium on Uranium Processing. Australian Atomic Energy Commission, Adelaide Australia.Google Scholar
Hewett, D.F., Stone, J. and Levine, H. (1957) Brannerite from San Bernardino County California. American Mineralogist, 42, 3038.Google Scholar
Koch, I. (2012) Analysis of Multivariate and High-Dimensional Data Theory and Practice. Cambridge University Press Cambridge, 504 pp.Google Scholar
, S., Josse, J. and Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis., Journal of Statistical Software, 25, 118.CrossRefGoogle Scholar
Longerich, H.P., Jackson, S.E. and Gunther, D. (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899904.CrossRefGoogle Scholar
Lottering, M.J., Lorenzen, L., Phala, N.S., Smit, J.T. and Schalkwyk, G.A.C. (2008) Mineralogy and uranium leaching response of low grade South African ores. Minerals Engineering, 21, 1622.CrossRefGoogle Scholar
Ludwig, K.R. and Cooper, J.A. (1984) Geochronology of Precambrian granites and associated U–Ti–Th mineralization northern Olary province South Australia. Contributions to Mineralogy and Petrology, 86, 298308.CrossRefGoogle Scholar
Lumpkin, G.R. (2001) Alpha-decay damage and aqueous durability of actinide host phases in natural systems. Journal of Nuclear Materials, 289, 136166.CrossRefGoogle Scholar
Lumpkin, G.R., Leung, S.H.F. and Ferenczy, J. (2012) Chemistry microstructure and alpha decay damage of natural brannerite. Chemical Geology, 291, 5568.CrossRefGoogle Scholar
Machault, J., Barbanson, L., Augé, T., Bailly, L. and Orgeval, J.-J. (2014) Mineralogical and microtextural parameters in metals ores traceability studies. Ore Geology Reviews, 63, 307327.CrossRefGoogle Scholar
Macmillan, E., Cook, N.J., Ehrig, K. and Pring, A. (2017) Chemical and textural interpretation of late-stage coffinite and brannerite from the Olympic Dam IOCG-Ag-U deposit Mineralogical Magazine, 81, 13231366.CrossRefGoogle Scholar
Mcdonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Melcher, F., Sitnikova, M.A., Graupner, T., Martin, N., Oberthür, T., Henjes-Kunst, F., Gäbler, H.-E., Gerdes, A., Brätz, H., Davis, D.W. and Dewaele, S. (2008) Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores. SGA News, 23, 614.Google Scholar
Melcher, F., Graupner, T., Gäbler, H.-E., Sitnikova, M.A., Henjes-Kunst, F., Oberthür, T., Gerdes, A. and Dewaele, S. (2015) Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy geochemistry and U–Pb geochronology. Ore Geology Reviews, 64, 667719.CrossRefGoogle Scholar
Mercadier, J., Cuney, M., Lach, P., Boiron, M.-C., Bonhoure, J., Richard, A., Leisen, M. and Kister, P. (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova, 23, 264269.10.1111/j.1365-3121.2011.01008.xCrossRefGoogle Scholar
Mesbah, A., Szenknect, S., Clavier, N., Lin, H., Baron, F., Beaufort, D., Batonneau, Y., Mercadier, J., Eglinger, A., Turuani, M., Goncalves, P., Choulet, F., Chapon, V., Seydoux-Guillaume, A.-M., Pagel, M. and Dacheux, N. (2019) Direct synthesis of pure brannerite UTi2O6. Journal of Nuclear Materials, 515, 401406.CrossRefGoogle Scholar
Mysen, B.O. and Richet, P. (2005) Silicate Glasses and Melts: Properties and Structure. Elsevier Amsterdam 555 pp.Google Scholar
Oberthür, T., Melcher, F., Henjes-Kunst, F., Gerdes, A., Stein, H., Zimmerman, A. and El Ghorfi, M. (2009) Hercynian age of the cobalt-nickel-arsenide-(gold) ores Bou Azzer Anti Atlas Morocco: Re–Os Sm–Nd and U–Pb age determinations. Economic Geology, 104, 10651079.CrossRefGoogle Scholar
Pagel, M., Pinte, G. and Rotach-Toulhoat, N. (1987) The rare earth elements in natural uranium oxides. Monograph Series on Mineral Deposits, 27, 8185.Google Scholar
Pajo, L., Mayer, K. and Koch, L. (2001) Investigation of the oxygen isotopic composition in oxidic uranium compounds as a new property in nuclear forensic science. Fresenius Journal of Analytical Chemistry, 371, 348352.CrossRefGoogle ScholarPubMed
Patchett, J.E. and Nuffield, E.W. (1960) Studies of radioactive compounds: X – The synthesis of crystallography of brannerite. The Canadian Mineralogist, 6, 483490.Google Scholar
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 25082518.CrossRefGoogle Scholar
Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards and Geoanalytical Research, 21, 115144.CrossRefGoogle Scholar
Pêcher, A. (1989) The metamorphism in the Central Himalaya. Journal of Metamorphic Geology, 7, 3141.CrossRefGoogle Scholar
Pointeau, V., Deditius, A., Miserque, F., Renock, D., Becker, U., Zhang, J., Clavier, N., Dacheux, N., Poinssot, C. and Ewing, R. (2009) Synthesis and characterization of coffinite. Journal of Nuclear Materials, 393, 449458.CrossRefGoogle Scholar
Polito, P.A., Kyser, T.K. and Stanley, C. (2009) The Proterozoic albitite-hosted Valhalla uranium deposit Queensland Australia: a description of the alteration assemblage associated with uranium mineralisation in diamond drill hole V39. Mineralium Deposita, 44, 1140.CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986) Numerical Recipes – The Art of Scientific Computing. Cambridge University Press Cambridge, 818 pp.Google Scholar
René, M. and Dolníček, Z. (2017) Uraninite coffinite and brannerite from shear-zone hosted uranium deposits of the Bohemian Massif (Central European Variscan Belt). Minerals, 7, 50. https://doi.org//10.3390/min7040050CrossRefGoogle Scholar
Sapsford, D.J., Bowell, R.J., Geroni, J.N., Penman, K.M. and Dey, M. (2012) Factors influencing the release rate of uranium thorium yttrium and rare earth elements from a low grade ore. Minerals Engineering, 39, 165172.CrossRefGoogle Scholar
Seydoux-Guillaume, A.-M., Bingen, B., Paquette, J.-L. and Bosse, V. (2015) Nanoscale evidence for uranium mobility in zircon and the discordance of U-Pb chronometers. Earth and Planetary Science Letters, 409, 4348.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 32, 751767.CrossRefGoogle Scholar
Smith, D.K. Jr. (1984) Uranium mineralogy. Pp. 4388 in: Uranium Geochemistry Mineralogy Geology Exploration and Resources (de Vivo, B., Ippolito, F., Capaldi, G. and Simpson, P.R., editors). The Institution of Mining and Metallurgy London.CrossRefGoogle Scholar
Spano, T.L., Simonetti, A., Balboni, E., Dorais, C. and Burns, P.C. (2017) Trace element and U isotope analysis of uraninite and ore concentrate: applications for nuclear forensic investigations. Applied Geochemistry, 84, (Suppl. C) 277285.CrossRefGoogle Scholar
Szymanski, J.T. and Scott, J.D. (1982) A crystal structure refinement of synthetic brannerite UTi2O6 and its bearing on rate of alkaline-carbonate leaching of brannerite in ore. The Canadian Mineralogist, 20, 271279.Google Scholar
Vance, E.R., Watson, J.N., Carter, M.L., Day, R.A., Lumpkin, G.R., Hart, K.P., Zhang, Y., McGlinn, P.J., Stewart, M.W.A. and Cassidy, D.J. (2000) Crystal chemistry radiation effects and aqueous leaching of brannerite UTi2O6. Ceramic Transactions, 107, 561568.Google Scholar
Vance, E.R., Watson, J.N., Carter, M.L., Day, R.A. and Begg, B.D. (2001) Crystal chemistry and stabilization in air of brannerite UTi2O6. Journal of the American Ceramic Society, 84, 141144.CrossRefGoogle Scholar
Wilde, A., Otto, A., Jory, J., MacRae, C., Pownceby, M., Wilson, N. and Torpy, A. (2013) Geology and mineralogy of uranium deposits from Mount Isa Australia: implications for albitite uranium deposit model. Minerals, 3, 258283.CrossRefGoogle Scholar
Zhang, Y.J., Lumpkin, G.R., Li, H., Blackford, M.G., Colella, M., Carter, M.L. and Vance, E.R. (2006) Recrystallization of amorphous natural brannerite through annealing: the effect of radiation damage on the chemical durability of brannerite. Journal of Nuclear Materials, 350, 293300.CrossRefGoogle Scholar
Zhang, Y.J., Karatchevtseva, I., Qin, M.J., Middleburgh, S.C. and Lumpkin, G.R. (2013) Raman spectroscopic study of natural and synthetic brannerite Journal of Nuclear Materials, 437, 149153.CrossRefGoogle Scholar
Supplementary material: PDF

Turuani et al. supplementary material

Appendix

Download Turuani et al. supplementary material(PDF)
PDF 436.8 KB