Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T19:49:38.533Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. XXIV. Revision of the crystal structure and chemical formula of vigrishinite, NaZnTi4(Si2O7)2O3(OH)(H2O)4, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia

Published online by Cambridge University Press:  28 February 2018

Elena Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2Canada
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB, R3T 2N2Canada

Abstract

The crystal structure of vigrishinite, ideally NaZnTi4(Si2O7)2O3(OH)(H2O)4, a murmanite-group mineral of the seidozerite supergroup from the type locality, Mt. Malyi Punkaruaiv, Lovozero alkaline massif, Kola Peninsula, Russia, was refined in space group C$\bar 1$, a = 10.530(2), b = 13.833(3), c = 11.659(2) Å, α = 94.34(3), β = 98.30(3), γ = 89.80(3)°, V = 1675.5(2.1) Å3 and R1 = 12.52%. Based on electron-microprobe analysis, the empirical formula calculated on 22 (O + F), with two constraints derived from structure refinement, OH + F = 1.96 pfu and H2O = 3.44 pfu, is: (Na0.67Zn0.21Ca0.051.07)Σ2 (Zn0.861.14)Σ2(Zn0.140.36)Σ0.5(Ti2.60Nb0.62Mn0.30${\rm Fe}_{{\rm 0}{\rm. 23}}^{{\rm 2 +}} $Mg0.10Zr0.06Zn0.05Al0.03Ta0.01)Σ4(Si4.02O14) [O2.60(OH)1.21F0.19]Σ4[(H2O)3.44(OH)0.56]Σ4{Zn0.24P0.03K0.03Ba0.02} with Z = 4. It seems unlikely that constituents in the {} belong to vigrishinite itself. The crystal structure of vigrishinite is an array of TS blocks (Titanium Silicate) connected via hydrogen bonds. The TS block consists of HOH sheets (H = heteropolyhedral and O = octahedral) parallel to (001). In the O sheet, the Ti-dominant MO(1,2) sites, Na-dominant MO(3) and □-dominant MO(4) sites give ideally Na□Ti2 pfu. In the H sheet, the Ti-dominant MH(1,2) sites, Zn-dominant AP(1) and vacant AP(2) sites give ideally Zn□Ti2 pfu. The MH and AP(1) polyhedra and Si2O7 groups constitute the H sheet. The ideal structural formula of vigrishinite of the form ${\rm A}_{\rm 2}^{P} {\rm M}_{\rm 2}^{\rm H} {\rm M}_{\rm 4}^{\rm O} $(Si2O7)2(${\rm X}_{\rm M}^{\rm O} $)2(${\rm X}_{\rm A}^{\rm O} $)2(${\rm X}_{{\rm M,A}}^{P} $)4 is Zn□Ti2Na□Ti2(Si2O7)2O2O(OH)(H2O)4. Vigrishinite is a Zn-bearing, Na-poor and OH-rich analogue of murmanite, ideally Na2Ti2Na2Ti2(Si2O7)2O2O2(H2O)4. Murmanite and vigrishinite are related by the following substitution: H(${\rm Na}_{\rm 2}^{\rm +} $)mur + O(Na+)mur + O(O2–)murH(Zn2+)vig + H(□)vig + O(□)vig + O[(OH)]vig. The doubling of the t1 and t2 translations of vigrishinite compared to those of murmanite is due to the order of Zn and □ in the H sheet and Na and □ in the O sheet of vigrishinite.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Cámara, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y. (2008) From structure topology to chemical composition. IX. Titanium silicates: revision of the crystal chemistry of lomonosovite and murmanite, Group-IV minerals. Mineralogical Magazine, 72, 12071228.Google Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C. and Khomyakov, A.P. (2013) Kolskyite, (Ca□)Na2Ti4(Si2O7)2O4(H2O)7, a Group-IV Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 51, 921936.Google Scholar
Hawthorne, F.C. (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals The Canadian Mineralogist, 40, 699710.Google Scholar
Karup-Møller, S. (1986) Murmanite from the Ilímaussaq alkaline complex, South Greenland. Neues Jahrbuch fur Mineralogie Abhandlungen, 155, 6788.Google Scholar
Khalilov, A.D. (1989) Refinement of the crystal structure of murmanite and new data on its crystal chemistry properties. Mineralogicheskii Zhurnal, 11(5), 1927 [in Russian].Google Scholar
Khalilov, A.D., Mamedov, Kh.S., Makarov, Ye.S. and P'yanzina, L.Ya. (1965) Crystal structure of murmanite. Doklady Akademii Nauk SSSR, 161, 150152.Google Scholar
Lykova, I.S., Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Yapaskurt, V.O., Chervonnaya, N.A. and Zolotarev, A.A. (2015 a) Crystal chemistry of cation-exchanged forms of epistolite-group minerals. Part I. Ag- and Cu-exchanged lomonosovite and Ag-exchanged murmanite. European Journal of Mineralogy, 27, 535549.Google Scholar
Lykova, I.S., Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Chervonnaya, N.A., Zolotarev, A.A. and Giester, G. (2015 b) Crystal chemistry of cation-exchanged forms of epistolite-group minerals. Part II. Vigrishinite and Zn-exchanged murmanite. European Journal of Mineralogy, 27, 669682.Google Scholar
Lykova, I.S., Pekov, I.V., Chukanov, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Zubkova, N.V., Britvin, S.N. and Giester, G. (2016) Calciomurmanite, (Na,□)2Ca(Ti,Mg,Nb)4[Si2O7]2 O2(OH,O)2(H2O)4, a new mineral from the Lovozero and Khibiny alkaline compexes, Kola Peninsula, Russia. European Journal of Mineralogy, 28, 835845.Google Scholar
Pekov, I.V., Britvin, S.N., Zubkova, N.V., Chukanov, N.V., Bryzgalov, I.A., Lykova, I.S., Belakovskiy, D.I. and Pushcharovsky, D.Yu. (2013) Vigrishinite, Zn2Ti4–xSi4O14(OH,H2O,□)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia. Geology of Ore Deposits, 55, 575586.Google Scholar
Pekov, I.V., Lykova, I.S., Chukanov, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Zolotarev, A.A. Jr and Zubkova, N.V. (2014) Zvyaginite, NaZnNb2Ti(Si2O7)2O(OH,F)3(H2O)4+x (x < 1), a new mineral of the epistolite group from the Lovozero alkaline pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 56, 644656.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” φ(ρघ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rastsvetaeva, R.K. and Andrianov, V.P. (1986) New data on the crystal structure of murmanite. Soviet Physics – Crystallography, 31, 4448.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.Google Scholar
Sokolova, E. (2010) Predictive crystal-chemical relations in Ti-silicates based on the TS block. Geology of Ore Deposits, 52, 410427.Google Scholar
Sokolova, E. and Cámara, F. (2013) From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. The Canadian Mineralogist, 51, 861891.Google Scholar
Sokolova, E. and Cámara, F. (2016) From structure topology to chemical composition. XXI. Understanding the crystal chemistry of barium in TS-block minerals. The Canadian Mineralogist, 54, 7995.Google Scholar
Sokolova, E. and Cámara, F. (2017) The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineralogical Magazine, 81, 14571484.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M3O11–14] trimeric structures: from hyperagpaitic complexes to saline lakes. The Canadian Mineralogist, 39, 12751294.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadian Mineralogist, 43, 15271544.Google Scholar
Sokolova, E., Hawthorne, F.C. and Abdu, Y.A. (2013) From structure topology to chemical composition. XV. Titanium silicates: revision of the crystal structure and chemical formula of schüllerite, Na2Ba2Mg2Ti2(Si2O7)2O2F2, from the Eifel volcanic region, Germany. The Canadian Mineralogist, 51, 715725.Google Scholar
Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Genovese, A., Cámara, F. and Khomyakov, A.P. (2015) From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of betalomonosovite, a Group-IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula, Russia. The Canadian Mineralogist, 53, 401428.Google Scholar
Sokolova, E., Genovese, A., Falqui, A., Hawthorne, F.C. and Cámara, F. (2017) From structure topology to chemical composition. XXIII. Revision of the crystal structure and chemical formula of zvyaginite, Na2ZnTiNB2(Si2O7)2O2(OH)2(H2O)4, a seidozerite-supergroup mineral from the Lovozero alkaline massif, Kola peninsula, Russia. Mineralogical Magazine, 81, pp. 15331550.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Sokolova and Hawthorne supplementary material

Sokolova and Hawthorne supplementary material

Download Sokolova and Hawthorne supplementary material(File)
File 93.9 KB