Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T21:34:06.385Z Has data issue: false hasContentIssue false

Fluorsigaiite, Ca2Sr3(PO4)3F, a new mineral of the apatite supergroup from the Saima alkaline complex, Liaoning Province, China

Published online by Cambridge University Press:  11 August 2022

Bin Wu*
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Xiang-ping Gu
Affiliation:
School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
Can Rao
Affiliation:
School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
Ru-cheng Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210033, China
Xing-qing Xing
Affiliation:
No. 241 Group Co., Ltd., Liaoning Geological Exploration and Mining Group, Fengcheng, Liaoning 118119, China
Fu-jun Zhong
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Jian-jun Wan
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Christophe Bonnetti
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
*
*Author for correspondence: Bin Wu, E-mail: wubin@ecut.edu.cn

Abstract

Fluorsigaiite, ideally Ca2Sr3(PO4)3F, is a new Sr analogue of fluorphosphohedyphane and a new member of the apatite supergroup. It was discovered in lujavrite from the Saima alkaline complex, Liaoning Province, China. Fluorsigaiite commonly occurs as individual prismatic, columnar and platy crystals of 10 to 50 μm in size, associated with microcline, nepheline, aegirine, natrolite, eudialyte, fluorapatite, a fluorstrophite-like mineral, stronadelphite and calcite. Occasionally, crystals of fluorsigaiite form prismatic aggregates in the interstices of lujavrite. Fluorsigaiite is translucent to transparent, colourless to yellowish white with a vitreous lustre and without fluorescence. The estimated Mohs hardness is 5, and the tenacity is brittle with uneven fractures. The calculated density is 3.842 g/cm3. Optically, fluorsigaiite is uniaxial (–) with ω = 1.64(1) and ɛ = 1.63(1) in white light and without dispersion. The mean chemical composition (in wt.%) of fluorsigaiite is Na2O 0.75, CaO 15.17, SrO 44.44, La2O3 3.64, Ce2O3 2.22, Pr2O3 0.19, Nd2O3 0.13, Sm2O3 0.05, Gd2O3 0.23, P2O5 31.87, F 1.91, H2O 0.46, sum 100.26, giving the empirical formula (Sr2.82Ca1.79Na0.16La0.15Ce0.09Pr0.01Nd0.01Gd0.01)Σ5.04P2.97O12[F0.66(OH)0.34]Σ1, which is calculated on the basis of 13 total anions and F+(OH) = 1. The strongest eight lines of its powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.563 (15) (002), 3.275 (15) (102), 3.144 (19) (120), 2.876 (100) (121), 2.861 (96) (112), 2.772 (27) (300), 1.991 (17) (222) and 1.895 (23) (213). Fluorsigaiite is hexagonal, in the space group P63/m and unit-cell parameters refined from single-crystal X-ray diffraction data are: a = 9.6101(2) Å, c = 7.1311(1) Å, V = 570.35(3) Å3 and Z = 2. It is isostructural with hedyphane-group minerals, and contains different prevailing (species-defining) Ca and Sr cations at the Ca1 and Ca2 sites, respectively. Fluorsigaiite was probably formed from Sr-rich fluids at late-magmatic or hydrothermal stage of the Saima lujavrite.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: David Hibbs

References

Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Chakhmouradian, A.R., Hughes, J.M. and Rakovan, J. (2005) Fluorcaphite, a second occurrence and detailed structural analysis: simultaneous accommodation of Ca, Sr, Na, and LREE in the apatite atomic arrangement. The Canadian Mineralogist, 43, 735–476.CrossRefGoogle Scholar
Efimov, A.F., Kravchenko, S.M. and Vasileva, Z.V. (1962) Strotium-apatite – a new mineral. Doklady Akademii Nauk SSSR, 142, 439442 [in Russian].Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hughes, J.M., Cameron, M. and Crowley, K.D. (1989) Structural variations in natural F, OH, and Cl apatites. American Mineralogist, 74, 870876.Google Scholar
Hughes, J.M., Cameron, M. and Crowley, K.D. (1991) Ordering of divalent cations in the apatite structure: Crystal structure refinements of natural Mn- and Sr-bearing apatite. American Mineralogist, 76, 18571862.Google Scholar
Khattech, I. and Jemal, M. (1997) Thermochemistry of phosphate products. Part II: Standard enthalpies of formation and mixing of calcium and strontium fluorapatites. Thermochimica Acta, 298, 2330.CrossRefGoogle Scholar
Khomyakov, A.P., Kulikova, I.M. and Rastsvetaeva, R.K. (1997) Fluorcaphite Ca(Sr,Na,Ca)(Ca,Sr,Ce)3(PO4)3F – a new mineral with the apatite structure motif. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 126, 8797 [in Russian].Google Scholar
Klevtsova, R.F. (1964) The crystal structure of strontium-apatite. Zhurnal Strukturnoi Khimii, 5, 318320 [in Russian].Google Scholar
Lim, S.C., Baikie, T., Pramana, S.S., Smith, R. and White, T.J. (2011) Apatite metaprism twist angle (φ) as a tool for crystallochemical diagnosis. Journal of Solid State Chemistry, 184, 29782986.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Meegoda, C., Bonner, C.E., Loutts, G., Stefanos, S. and Miller, G.E. (1999) Raman spectroscopic study of barium fluorapatite. Journal of Luminescence, 81, 101109.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
O'Donnell, M.D., Fredholm, Y., de Rouffignac, A. and Hill, R.G. (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomaterialia, 4, 14551464.CrossRefGoogle ScholarPubMed
Pasero, M. (2022) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.main.jp/Google Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.CrossRefGoogle Scholar
Pekov, I., Britvin, S.N., Zubkova, N.V., Pushcharovsky, D.Y., Pasero, M. and Merlino, S. (2010) Stronadelphite, Sr5(PO4)3F, a new apatite-group mineral. European Journal of Mineralogy, 22, 869874.CrossRefGoogle Scholar
Peng, Q.R., Cao, R.L., Zou, Z.R., Zhang, L.J., Yin, S.S. and Ding, K.S. (1962) Gugiaite, Ca2BeSi2O7, a new beryllium mineral belonging to the melilite group. Acta Geologica Sinica, 42, 259274 [in Chinese with English abstract].Google Scholar
Pushcharovsky, D.Y., Nadezhina, T.N. and Khomyakov, A.P. (1987) Crystal structure of strontium apatite from Khibiny. Soviet Physics, Crystallography, 32, 524526 [in Russian].Google Scholar
Rastsvetaeva, R.K. and Khomyakov, A.P. (1996) Structural features of a new naturally occurring representative of the fluorapatite-deloneite series. Crystallography Reports, 41, 789792.Google Scholar
Sghir, B., Hlil, E.K., Laghzizil, A., Boujrhal, F.Z., Cherkaoui El Moursli, R. and Fruchart, D. (2009) Structure electronic and ionic conductivity study versus Ca content in Ca10–xSrx(PO4)6F2 apatites. Materials Research Bulletin, 44, 15921595.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Shen, G.F., Xu, J.S., Yao, P. and Li, G.W. (2017) Fengchengite: a new species with the Na-poor but vacancy-dominant N(5) site in the eudialyte group. Acta Mineralogica Sinica, 37, 140151 [in Chinese with English abstract].Google Scholar
Wu, F.Y., Yang, Y.H., Marks, M.A.W., Liu, Z.C., Zhou, Q., Ge, W.C., Yang, J.S., Zhao, Z.F., Mitchell, R.H. and Markl, G. (2010) In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273, 834.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Yang, J.H., Wu, F.Y., Zhang, W.L., Gu, X.P. and Zhang, A.C. (2015) Wadeite (K2ZrSi3O9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: its origin and response to multi-stage activities of alkaline fluids. Lithos, 224–225, 126142.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Yang, J.H., Wu, F.Y., Zhang, W.L., Gu, X.P. and Zhang, A.C. (2016) Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos, 262, 232246.CrossRefGoogle Scholar
Wu, B., Wen, H.J., Bonnetti, C., Wang, R.C., Yang, J.H. and Wu, F.Y. (2019) Rinkite-(Ce) in the nepheline syenite pegmatite from the Saima alkaline complex, northeastern China: its occurrence, alteration, and implications for REE mineralization. The Canadian Mineralogist, 57, 903924.CrossRefGoogle Scholar
Wu, B., Gu, X.P., Rao, C., Wang, R.C., Zhong, F.J. and Wan, J.J. (2022) Fluorsigaiite, IMA 2021-87a. CNMNC Newsletter 67; Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.56.Google Scholar
Xue, W.H., Zhai, K., Lin, C.C. and Zhai, S.M. (2018) Effect of temperature on the Raman spectra of Ca5(PO4)3F fluorapatite. European Journal of Mineralogy, 30, 951956.CrossRefGoogle Scholar
Yang, Z.M., Giester, G., Ding, K.S. and Tillmanns, E. (2012) Hezuolinite, (Sr,REE)4Zr(Ti,Fe3+,Fe2+)2Ti2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province, NE China. European Journal of Mineralogy, 24, 189196.CrossRefGoogle Scholar
Zhai, S.M., Shieh, S.R., Xue, W.H. and Xie, T.Q. (2015) Raman spectra of stronadelphite Sr5(PO4)3 at high pressures. Physics and Chemistry of Minerals, 42, 579585.CrossRefGoogle Scholar
Zhu, Y.S., Yang, J.H., Sun, J.F., Zhang, J.H. and Wu, F.Y. (2016) Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117, 184207.CrossRefGoogle Scholar
Zhu, Y.S., Yang, J.H., Sun, J.F. and Wang, H. (2017) Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45, 407410.CrossRefGoogle Scholar
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material

Download Wu et al. supplementary material(File)
File 690.6 KB