Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T02:03:27.349Z Has data issue: false hasContentIssue false

Fluorcaphite from hydrothermally altered teschenite at Tichá, Outer Western Carpathians, Czech Republic: compositional variations and origin

Published online by Cambridge University Press:  26 January 2018

Kamil Kropáč*
Affiliation:
Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
Zdeněk Dolníček
Affiliation:
National Museum, Department of Mineralogy and Petrology, Cirkusová 1740, 193 00 Praha 9, Chech Republic
Pavel Uher
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Tomáš Urubek
Affiliation:
Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic Department of Geology and Pedology, Faculty of Forestry andWood Technology, Mendel University, Zemědělská 3, 61300 Brno, Czech Republic

Abstract

Fluorcaphite [SrCaCa3(PO4)3F] is a rare strontium-calcium member of the apatite supergroup which was previously known only from the Khibiny and Lovozero alkaline complexes. This paper presents evidence of a third fluorcaphite occurrence. It was found in hydrothermally altered Lower Cretaceous teschenite, which forms an intrusive body (probably a sill) in the Lower Cretaceous siliciclastic flysch sediments at Tichá near Frenštát pod Radhoštěm, Silesian Unit, Outer Western Carpathians (Czech Republic). Fluorcaphite occurs as an accessory mineral in hydrothermal veins and in an adjacent alteration zone within the host teschenite. Vein-hosted fluorcaphite forms euhedral crystals and skeletal crusts enclosed in analcime while the teschenite-hosted fluorcaphite forms small overgrowths on older phenocrysts of magmatic apatite. Fluorcaphite from Tichá contains 0.50–1.97 Sr apfu, 2.96–4.49 Ca apfu, 0.59–1.09 F apfu and significantly lower Na (0.01–0.05 apfu) and LREE contents (up to 0.07 apfu). Fluorcaphite formed under hydrothermal conditions after solidification of the host teschenite during post-magmatic hydrothermal activity at temperatures probably between ∼150 and 300°C. The initial 87Sr/86Sr ratio of vein-hosted analcime +fluorcaphite (0.7063) is significantly higher than those of the host teschenite (0.7041). We therefore suggest a mix of strontium sources in the vein analcime+fluorcaphite: (1) from the host teschenite plus (2) from external source(s) including the Lower Cretaceous seawater and/or surrounding sedimentary rocks of the Silesian Unit. These data indicate an open-system fluid regime and the participation of various fluid sources during the alteration event giving rise to fluorcaphite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahijado, A., Casillas, R., Nagy, G. and Fernández, C. (2005) Sr-rich minerals in a carbonatite skarn, Fuerteventura, Canary Island (Spain). Mineralogy and Petrology, 84, 107127.CrossRefGoogle Scholar
Beard, A.D., Downes, H., Hegner, E. and Sablukov, S.M. (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region N. Russia: evidence for transitional kimberlite magma types. Lithos, 51, 4773.CrossRefGoogle Scholar
Betkowski, W.B., Harlov, D.E. and Rakovan, J.F. (2016) Hydrothermal mineral replacement for an apatitemonazite assemblage in alkali-rich fluids at 300–600°C and 100 MPa. American Mineralogist, 101, 26202637.CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P. and Mitchell, R.H. (2002) Strontium-apatite: new occurrences and the extent of Sr-for-Ca substitution in apatite-group minerals. The Canadian Mineralogist, 40, 121136.CrossRefGoogle Scholar
Chakhmouradian, A.R., Hughes, J.M. and Rakovan, J. (2005) Fluorcaphite, a second occurrence and detailed structural analysis: simultaneous accommodation of Ca,, Sr,, Na,, and LREE in the apatite atomic arrangement. The Canadian Mineralogist, 43, 735746.CrossRefGoogle Scholar
Dolníček, Z., Kropáč, K., Uher, P. and Polách, M. (2010a) Mineralogical and geochemical evidence for multistage origin of mineral veins hosted by teschenites at Tichá, Outer Western Carpathians, Czech Republic. Chemie der Erde, 70, 267282.Google Scholar
Dolníček, Z., Urubek, T. and Kropáč, K. (2010b) Postmagmatic hydrothermal mineralization associated with Cretaceous picrite (Outer Western Carpathians, Czech Republic): interaction between host rock and externally derived fluid. Geologica Carpathica, 61, 327339.Google Scholar
Dolníček, Z., Kropáč, K., Janíčková, K., Urubek, T. (2012) Diagenetic source of fluids causing the hydrothermal alteration of teschenites in the Silesian Unit, Outer Western Carpathians, Czech Republic: Petroleumbearing vein mineralization from the Stříbrník site. Marine and Petroleum Geology, 37, 2740.CrossRefGoogle Scholar
Dostal, J. and Owen, J.V. (1998) Cretaceous alkaline lamprophyres from northeastern Czech Republic: geochemistry and petrogenesis. Geologische Rundschau, 87, 6777.CrossRefGoogle Scholar
Edgar, A.D. (1989) Barium- and strontium-enriched apatites in lamproites from West Kimberley, Western Australia. American Mineralogist, 74, 113116.Google Scholar
Eliáš, M. (1970) Lithology and sedimentology of the Silesian Unit in the Moravskoslezské Beskydy Mts. Sborník geologických věd, Řada G – Geologie, 18, 799 [in Czech].Google Scholar
Grabowski, J., Krzemiński, L., Nescieruk, P., Szydlo, A., Paszkowski, M., Pecskay, Z. and Wójtowicz, A. (2003) Geochronology of teschenitic intrusions in the Outer Western Carpathians of Poland–constraints from 40K/40Ar ages and biostratigraphy. Geologica Carpathica, 54, 385393.Google Scholar
Harlov, D.E. (2015) Apatite: a fingerprint for metasomatic processes. Elements, 11, 171176.CrossRefGoogle Scholar
Harlov, D.E. and Förster, H.-J. (2003) Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, 88, 12091229.CrossRefGoogle Scholar
Harlov, D.E., Wirth, R. and Förster, H.-J. (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150, 268286.CrossRefGoogle Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. Pp. 105148 in: Carbonatites: Genesis and Evolution (K. Bell, editor), Unwin Hyman, London.Google Scholar
Hovorka, D. and Spišiak, J. (1988) Mesozoic Volcanism in the Western Carpathians. Veda. Bratislava, 263 pp. [in Slovak].Google Scholar
Hughes, J.M. and Rakovan, J.F. (2015) Structuraly robust, chemically diverse: apatite and apatite supergroup minerals. Elements, 11, 165170.CrossRefGoogle Scholar
Jirásek, J., Dolníček, Z., Matýsek, D. and Urubek, T. (2017) Genetic aspects of barite mineralization associated with rocks of the teschenite association in the Silesian Unit, Outer Western Carpathians, Czech Republic. Geologica Carpathica, 68, 119129.CrossRefGoogle Scholar
Khomyakov, A.P., Kulikova, I.M. and Rastsvetaeva, R.K. (1997) Fluorcaphite, Ca(Sr,Na,Ca)(Ca,Sr,Ce)3 (PO4)3F, a new mineral with the apatite structural motif. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 3, 8797 [in Russian].Google Scholar
Kropáč, K., Dolníček, Z., Buriánek, D., Urubek, T. and Mašek, V. (2015) Carbonate inclusions in Lower Cretaceous picrites from the Hončova hůrka Hill (Czech Republic, Outer Western Carpathians): Evidence for primary magmatic carbonates? International Journal of Earth Sciences, 104, 12991315.Google Scholar
Kudělásková, J. (1987) Petrology and geochemistry of selected rock types of teschenite association, Outer Western Carpathians. Geologica Carpathica, 38, 545573.Google Scholar
Kynický, J., Xu, Ch., Bajer, A., Samec, P. and Kynická, A. (2009) New exploration of teschenite clan rocks: Sr and REE-rich fluorapatites. Geological Research in Moravia and Silesia, 16, 6669 [in Czech].Google Scholar
Liferovich, R.P. and Mitchell, R.H. (2006) Apatite-group minerals from nepheline syenite, Pilansberg alkaline complex, South Africa. Mineralogical Magazine, 70, 463484.CrossRefGoogle Scholar
Lucińska-Anczkiewicz, A., Villa, I.M., Anczkiewicz, R. and Ślaczka, A. (2002) 40Ar/39Ar dating of alkaline lamprophyres from the Polish Western Carpathians. Geologica Carpathica, 53, 4552.Google Scholar
Mao, M., Rukhlov, A.S., Rowins, S.M., Spencer, J. and Coogan, L.A. (2016) Apatite trace element composition: a robust new tool for mineral exploration. Economic Geology, 111, 11871222.CrossRefGoogle Scholar
Moëlo, Y., Rouer, O. and Bouhnik-Le Coz, M. (2008) From diagenesis to hydrothermal recrystallization: polygenic Sr-rich fluorapatite from the oolitic ironstone of Saint-Aubin-des-Châteaux (Armorican Massif, France). European Journal of Mineralogy, 20, 205216.CrossRefGoogle Scholar
Mandour, M.A. (1982) Geochemical and Mineralogical Study of Rocks of Teschenite Association in the Sub- Beskydy Area (ČSSR). MSc Thesis, VŠB Ostrava [in Czech].Google Scholar
Matýsek, D. (1989) Geochemical classification of rock of teschenite association. Sborník vědeckých prací Vysoké školy báňské – Technické univerzity Ostrava, 35, 301324 [in Czech].Google Scholar
Narebski, W. (1990) Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series. Geologica Carpathica, 41, 521528.Google Scholar
Nier, A.O. (1938) The isotopic constitution of strontium, barium, bismuth, thallium and mercury. Physical Review, 54, 275278.CrossRefGoogle Scholar
Pacák, O. (1926) Volcanic rocks at the northern footwall of the Moravské Beskydy Mts. Rozpravy České akademie věd a umění, 35 [in Czech].Google Scholar
Pan, Y. and Fleet, M.E. (2002) Compositions of the apatitegroup minerals: substitution mechanisms as controlling factors. Pp. 1349 in: Phosphates: Geochemical, Geobiological and Materials Importance (M.L. Kohn, J. Rakovan and J.M. Hughes, editors). Reviews in Mineralogy & Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Eletskaya, O.V., Khomyakov, A.P. and Men’shikov, Y.P. (1995) Belovite-(Ce): new data, refined formula and the relationship to other minerals of apatite group. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 124 (2), 98110 [in Russian].Google Scholar
Peng, G.Y., Juhr, J.F. and McGee, J.J. (1997) Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82, 12101224.CrossRefGoogle Scholar
Plašienka, D., Grecula, P., Putiš, M., Kováč, M. and Hovorka, D. (1997) Evolution and structure of the Western Carpathians: an overview. Pp. 124 in: Geological Evolution of the Western Carpathians (P. Grecula, D. Hovorka and M. Putiš, editors). Mineralia Slovaca Monograph, Bratislava.Google Scholar
Pouchou, J. and Pichoir, F. (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Analysis, 20, 104105.Google Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Putnis, A. (2009) Mineral replacement reactions. Pp. 87–124 in: Thermodynamics and Kinetics of Water-Rock Interaction (E.H. Oelkers and J. Schott, editors). Reviews in Mineralogy and Geochemistry, 70. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Rastsvetaeva, R.K. and Khomyakov, A.P. (1996) Structural features of a new naturally occurring representative of the fluorapatite-deloneite series. Crystallography Reports, 41, 789792.Google Scholar
Rouse, R.C. and Dunn, P.J. (1982) A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatite. American Mineralogist, 67, 9096.Google Scholar
Schuchová, K. (2016) Petrographic Variability of Teschenites from the Site Bludovice near Nový Jičín. MSc Thesis, Faculty of Science, Palacký University, Olomouc, Czech Republic [in Czech].Google Scholar
Skýpala, J. (2014) Strontium Mineralization of the Těšín Limestone (Silesian Unit, Outer Western Carpathians). BSc Thesis, Faculty of Science, Palacký University, Olomouc, Czech Republic [in Czech].Google Scholar
Spišiak, J. and Hovorka, D. (1997) Petrology of the Western Carpathians Cretaceous primitive alkaline volcanics. Geologica Carpathica, 48, 113121.Google Scholar
Spišiak, J. and Mikuš, T. (2008) Ba- and Sr-rich phases in Cretaceous alkaline volcanites of the Outer Western Carpathians. Geochémia 2008 proceedings, ŠGÚDŠ Bratislava, 135137 [in Slovak].Google Scholar
Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: convention on the use of decay constant in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359362.CrossRefGoogle Scholar
Šmíd, B. (1978) The Investigation of Igneous Rocks of the Teschenite Association. MS, Central Geological Survey, Prague, 153 pp [in Czech].Google Scholar
Smulikowski, K. (1929) Les roches eruptives de la zone subbeskidique en Silesie et Moravie. Kosmos B, 54, 749850.Google Scholar
Szopa, K., Wlodyka, R. and Chew, D. (2014) LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geologica Carpathica, 65, 273284.CrossRefGoogle Scholar
Teiber, H., Marks, M.A.W., Arzamastsev, A.A., Wenzel, T. and Markl, G. (2015) Compositional variation in apatite from various host rocks: clues with regards to source composition and crystallization conditions. Neues Jahrbuch für Mineralogie – Abhandlungen Journal of Mineralogy and Geochemistry, 192, 151167.CrossRefGoogle Scholar
Urubek, T., Dolníček, Z., Kropáč, K. and Lehotský, T. (2013) Fluid inclusions and chemical composition of analcimes from Řepiště (Outer Western Carpathians). Geological Research in Moravia and Silesia, 20, 107111 [in Czech].Google Scholar
Urubek, T., Dolníček, Z. and Kropáč, K. (2014) Genesis of syntectonic hydrothermal veins in the igneous rock of teschenite association (Outer Western Carpathians, Czech Republic): growth mechanism and origin of fluids. Geologica Carpathica, 65, 419431.CrossRefGoogle Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Bruhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, Ch., Pawellek, F., Podlaha, O.G. and Strauss, H. (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 5988.CrossRefGoogle Scholar
Wlodyka, R. and Kozlowski, A. (1997) Fluid inclusions in hydrothermal analcimes from the rocks of the Cieszyn magma province (Poland). ECROFI XIV Symposium, 350351.Google Scholar
Yakovenchuk, V.N., G.Yu., Ivanyuk, Pakhomovskiy, Y.A. and Men’shikov, Y.P. (1999) Minerals of the Khibiny Massif. Zemlya Press, Moscow [in Russian].Google Scholar