Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T23:40:08.219Z Has data issue: false hasContentIssue false

Feynmanite, a new sodium uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA

Published online by Cambridge University Press:  28 May 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Travis A. Olds
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
Samuel N. Perry
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
*
Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral feynmanite, Na(UO2)(SO4)(OH)·3.5H2O, was found in both the Blue Lizard and Markey mines, San Juan County, Utah, USA, where it occurs as a secondary phase on pyrite-rich asphaltum in association with chinleite-(Y), gypsum, goethite, natrojarosite, natrozippeite, plášilite, shumwayite (Blue Lizard) and wetherillite (Markey). The mineral is pale greenish yellow with a white streak and fluoresces bright greenish white under a 405 nm laser. Crystals are transparent with a vitreous lustre. It is brittle, with a Mohs hardness of ~2, irregular fracture and one perfect cleavage on {010}. The calculated density is 3.324 g cm–3. Crystals are thin needles or blades, flattened on {010} and elongate on [100], exhibiting the forms {010}, {001}, {101} and {10$\bar{1}$}, and are up to ~0.1 mm in length. Feynmanite is optically biaxial (–), with α = 1.534(2), β = 1.561(2) and γ = 1.571(2) (white light); 2Vmeas. = 62(2)°; no dispersion; and optical orientation: X = b, Ya,Zc. It is weakly pleochroic: X = colourless, Y = very pale green yellow and Z = pale green yellow (X < Y < Z). Electron microprobe analyses (WDS mode) provided (Na0.84Fe0.01)(U1.01O2)(S1.01O4)(OH)·3.5H2O. The five strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 8.37(100)(010), 6.37(33)($\bar{1}$01,101), 5.07(27)($\bar{1}$11,111), 4.053(46)(004,021) and 3.578(34)(120). Feynmanite is monoclinic, has space group P2/n, a = 6.927(3), b = 8.355(4), c = 16.210(7) Å, β = 90.543(4)°, V = 938.1(7) Å3 and Z = 4. The structure of feynmanite (R1 = 0.0371 for 1879 Io > 2σI) contains edge-sharing pairs of pentagonal bipyramids that are linked by sharing corners with SO4 groups, yielding a [(UO2)2(SO4)2(OH)2]2– sheet based on the phosphuranylite anion topology. The sheet is topologically identical to those in deliensite, johannite and plášilite. The dehydration of feynmanite to plášilite results in interlayer collapse involving geometric reconfiguration of the sheets and the ordering of Na.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Mark Welch

§

Current address: School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.Google Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R.C., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, DC.Google Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015 a) Fermiite, Na4(UO2)(SO4)3-3H2O and oppenheimerite, Na2(UO2)(SO4)2·3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.Google Scholar
Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015 b) Plášilite, Na(UO2)(SO4)(OH)·2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.Google Scholar
Kampf, A.R., Olds, T.A., Plášil, J., Marty, J. and Perry, S.N. (2017 a) Feynmanite, IMA 2017-035. CNMNC Newsletter No. 38, August 2017, page 1037; Mineralogical Magazine, 81, 10331038.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2017 b) Klaprothite, péligotite and ottohahnite, three new sodium uranyl sulfate minerals with bidentate UO7–SO4 linkages from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 81, 753779.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2018) Markeyite, a new calcium uranyl tricarbonate mineral from the Markey mine, San Juan County, Utah, USA. Mineralogical Magazine, 81, 10891100.Google Scholar
Krivovichev, S.V. and Burns, P.C. (2007) Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). Pp. 95182 in: Structural Chemistry of Inorganic Actinide Compounds (Krivovichev, S.V., Burns, P.C. and Tananaev, I.G., editors). Elsevier, Amsterdam.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Mereiter, K. (1982) Die Kristallstrukturs des Johannits, Cu(UO2)2(OH)2(SO4)2·8H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 4757.Google Scholar
Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U–O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.Google Scholar
Plášil, J., Hauser, J., Petříček, V., Meisser, N., Mills, S.J. , Škoda, R., Fejfarová, K., Čejka, J., Sejkora, J., Hloušek, J., Johannet, J.-M., Machovič, V. and Lapčák, L. (2012) Crystal structure and formula revision of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7. Mineralogical Magazine, 76, 28372860.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Sheldrick, G.M. (2015 a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015 b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Volkovich, V.A., Griffiths, T.R., Fray, D.J. and Fields, M. (1998) Vibrational spectra of alkali metal (Li, Na and K) uranates and consequent assignment of uranate ion site symmetry. Vibrational Spectroscopy, 17, 8391.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 1

Download Kampf et al. supplementary material(File)
File 352.9 KB