Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T21:25:52.827Z Has data issue: false hasContentIssue false

Feldspars defined and described: a pair of posters published by the Mineralogical Society. Sources and supporting information

Published online by Cambridge University Press:  05 July 2018

I. Parsons*
Affiliation:
Grant Institute of Earth Science, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK

Abstract

The Mineralogical Society of Great Britain & Ireland has published two full-colour posters describing the feldspar minerals, designed primarily for student use. They may be downloaded free of charge by all from http://www.minersoc.org/pages/education/edu.html and are designed to be printed at A3 size, although they are legible at A4 and in greyscale. Sheet 1 deals with nomenclature, crystal structure and phase relationships, while Sheet 2 covers phase behaviour. For brevity no sources are given on the posters, and these are provided in the present article, together with supporting notes and suggested reading on the more complex topics.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abart, R., Petrisheva, E., Wirth, R. and Rhede, D. (2009) Exsolution by spinodal decomposition II: Perthite formation during slow cooling of anatexites from Ngoronghoro, Tanzania. American Journal of Science, 309, 450475.CrossRefGoogle Scholar
Alling, H.L. (1932) Perthites. American Mineralogist, 17, 4365.Google Scholar
Bachinski, S.W. and Müller, G. (1971) Experimental determination of the microcline-low albite solvus. Journal of Petrology, 12, 329356.CrossRefGoogle Scholar
Bambauer, H.U., Krause, C. and Kroll, H. (1989) TEM investigation of the sanidine/microcline transition across metamorphic zones. European Journal of Mineralogy, 1, 4758.CrossRefGoogle Scholar
Benisek, A., Dachs, E. and Kroll, H. (2010) A ternary feldspar mixing model based on calorimetric data: development and application. Contributions to Mineralogy and Petrology, DOI: 10.1007/s00410-009-0480-8.CrossRefGoogle Scholar
Bowen, N.L. (1913). The melting phenomena of the plagioclase feldspars. American Journal of Science, 35, 577599.CrossRefGoogle Scholar
Brady, J.B. (1987) Coarsening of fine-scale exsolution lamellae. American Mineralogist, 72, 697706.Google Scholar
Brown, W.L. (1993) Fractional crystallization and zoning in igneous feldspars: ideal water-buffered liquid fractionation lines and feldspar zoning paths. Contributions to Mineralogy and Petrology, 113, 115125.CrossRefGoogle Scholar
Brown, W.L. editor (1984) Feldspars and Feldspathoids. Structures, Properties and Occurrences. NATO ASI Series C 137. D. Reidel Publishing Company, Dordrecht, The Netherlands 541 pp.CrossRefGoogle Scholar
Brown, W.L. and Parsons, I. (1981) Towards a more practical two feldspar geothermometer. Contributions to Mineralogy and Petrology, 76, 369377.CrossRefGoogle Scholar
Brown, W.L. and Parsons, I. (1984 a) Exsolution and coarsening mechanisms and kinetics in an ordered cryptoperthite series. Contributions to Mineralogy and Petrology, 86, 318.CrossRefGoogle Scholar
Brown, W.L. and Parsons, I. (1984 b) The nature of potassium feldspar, exsolution microtextures and development of dislocations as a function of composition in perthitic alkali feldspars. Contributions to Mineralogy and Petrology, 86, 335341.CrossRefGoogle Scholar
Brown, W.L. and Parsons, I. (1985) Calorimetric and phase-diagram approaches to two-feldspar geothermometry: a critique. American Mineralogist, 70, 356361.Google Scholar
Brown, W.L. and Parsons, I. (1988) Zoned ternary feldspars in the Klokken intrusion: exsolution textures and mechanisms. Contributions to Mineralogy and Petrology, 98, 444454.CrossRefGoogle Scholar
Brown, W.L. and Parsons, I. (1989) Alkali feldspars: ordering rates, phase transformations and behaviour diagrams for igneous rocks. Mineralogical Magazine, 53, 2542.CrossRefGoogle Scholar
Brown, W.L. and Parsons, I. (1993) Storage and release of elastic strain energy: the driving force for low temperature reactivity and alteration of alkali feldspars. Pp. 267290 in: Defects and Processes in the Solid State: Geoscience Applications. The McLaren Volume. (Boland, J.N., and Fitz Gerald, J.D., editors). Elsevier Science Publishers B.V, Amsterdam.Google Scholar
Brown, W.L., Becker, S.M. and Parsons, I. (1983) Cryptoperthites and cooling rate in a layered syenite pluton. Contributions to Mineralogy and Petrology, 82, 1325.CrossRefGoogle Scholar
Buntebarth, G. (1991) Thermal models of cooling. Pp. 379402 in: Equilbrium and Kinetics in Contact Metamorphism. (Voll, G., Töpel, J., Pattison, D.R.M. and Seifert, F., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Carpenter, M.A. (1994) Subsolidus phase relations of the plagioclase feldspar solid solution. Pp. 221269 in: Feldspars and their Reactions (Parsons, I., editor). NATO ASI Series C 421. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Carpenter, M.A and Salje, E.K.H. (1994) Thermodynamics of nonconvergent cation ordering in minerals. American Mineralogist, 79, 10841098.Google Scholar
Christie, O.H.J. editor (1962) Feldspar Volume. Bind 42.2 Halvbind. Norsk Geologisk Tidsskrift, Norsk Geologisk Forening, Oslo, 606 pp.Google Scholar
Deer, W.A., Howie, R.A and Zussman, J. (2001) Rock- Forming Minerals, Volume 4A, Framework Silicates: Feldspars. The Geological Society, London, viii + 972 pp.Google Scholar
Eggleton, R.A. and Buseck, P.R. (1980) The orthoclase microcline inversion: a high resolution transmission electron microscope study and strain analysis. Contributions to Mineralogy and Petrology, 74, 123133.CrossRefGoogle Scholar
Elkins, L.T. and Grove, T.L. (1990) Ternary feldspar experiments and thermodynamic models. American Mineralogist, 75, 544559.Google Scholar
Envik, A.K., Putnis, A., Fitz Gerald, J.D. and Austrheim, H. (2008) Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite. The Canadian Mineralogist, 46, 14011415.CrossRefGoogle Scholar
Fitz Gerald, J.D. and McLaren, A.C. (1982) The microstructures of microcline from some granitic rocks and pegmatites. Contributions to Mineralogy and Petrology, 80, 219229.CrossRefGoogle Scholar
Fitz Gerald, J.D., Parsons, I. and Cayzer, N. (2006) Nanotunnels and pull-aparts: Defects of exsolution lamellae in alkali feldspars. American Mineralogist, 91, 772783.CrossRefGoogle Scholar
Flehmig, W. (1977) The synthesis of feldspars at temperatures between 0°-80°C, their ordering behaviour and twinning. Contributions to Mineralogy and Petrology, 65, 19.CrossRefGoogle Scholar
Folk, R.L. (1955) Note on the significance of turbid feldspars. American Mineralogist, 40, 356357.Google Scholar
Fuhrman, M.L. and Lindsley, D.L. (1988) Ternary feldspar modelling and thermometry. American Mineralogist, 73, 201215.Google Scholar
Goldsmith, J.R. and Jenkins, D.M. (1985) The high-low albite relations revealed by reversal of degree of order at high pressure. American Mineralogist, 70, 911923.Google Scholar
Harker, R.I. (1954) The occurrence of orthoclase and microcline in the granitic gneisses of the Carn Chuinneag-Inchbae complex, E. Ross-shire. Geological Magazine, 91, 129136.CrossRefGoogle Scholar
Harker, R.I. (1962) The older orthogneisses of Carn Chuinneag and Inchbae. Journal of Petrology, 3, 215237.CrossRefGoogle Scholar
Henderson, C.M.B. (1984) Feldspathoid stabilities and phase inversions - a review. Pp. 471499 in: Feldspars and Feldspathoids. Structures, Properties and Occurrences. (Brown, W.L., editor). NATO ASI Series C 137. D. Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Hofmeister, A.M. and Rossman, G.R. (1983) Color in feldspars. Pp. 271280 in: Feldspar Mineralogy (Ribbe, P.H., editor). Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Hovis, G.L., Delbove, F. and Roll Bose, M. (1991) Gibbs energies and entropies of K-Na mixing for alkali feldspars from phase equilibrium data: Implications for feldspar solvi and short-range order. American Mineralogist, 76, 913927.Google Scholar
Johannes, W. (1979) Ternary feldspars: kinetics and possible equilibria at 800°C. Contributions to Mineralogy and Petrology, 68, 221230.CrossRefGoogle Scholar
Johannes, W. (1994) Partial melting reactions of plagioclase and plagioclase-bearing systems. Pp. 161194 in: Feldspars and their Reactions (Parsons, I., editor). NATO ASI Series C 421. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Johnson, E.A. and Rossman, G.R. (2004) A survey of hydrous species and concentrations in igneous feldspars. American Mineralogist, 89, 586600.CrossRefGoogle Scholar
Kroll, H. and Bambauer, H.-U. (1981) Diffusive and displacive transformation in plagioclase and ternary feldspar series. American Mineralogist, 66, 763769.Google Scholar
Kroll, H. and Knitter, R. (1991) Al,Si exchange kinetics in sanidine and anorthoclase and modeling of rock cooling paths. American Mineralogist, 76, 928941.Google Scholar
Kroll, H., Bambauer, H.-U. and Schirmer, U. (1980) The high albite-monalbite and analbite-monalbite transitions. American Mineralogist, 65, 763769.Google Scholar
Kroll, H., Krause, C. and Voll, G. (1991) Disordering, re-ordering and unmixing in alkali feldspars from contact-metamorphosed quartzites. Pp. 267296 in: Equilibrium and Kinetics in Contact Metamorphism (Voll, G., Töpel, J., Pattison, D.R.M. and Seifert, F., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Laves, F. (1950) The lattice and twinning of microcline and other potash feldspars. Journal of Geology, 58, 548–547.CrossRefGoogle Scholar
Laves, F. (1960) The feldspars: their polysynthetic twinning and their phase relations. Rendiconti della Societá Italiana di Mineralogia e Petrologia, 16, 37100.Google Scholar
Lee, M.R. and Parsons, I. (1995) Microtextural controls of weathering of perthitic alkali feldspars. Geochimica Cosmochimica Acta, 59, 44654488.CrossRefGoogle Scholar
Lee, M.R. and Parsons, I. (1997) Dislocation formation and albitization in alkali feldspars from the Shap granite. American Mineralogist, 82, 557570.CrossRefGoogle Scholar
Lee, M.R. and Parsons, I. (1998) Microtextural controls of diagenetic alteration of detrital alkali feldspars: a case study of the Shap conglomerate (Lower Carboniferous), Northwest England. Journal of Sedimentary Research, 68, 198211.CrossRefGoogle Scholar
Lee, M.R., Waldron, K.A., Parsons, I. (1995) Exsolution and alteration microtextures in alkali feldspar phenocrysts from the Shap granite. Mineralogical Magazine, 59, 6378.CrossRefGoogle Scholar
Lee, M.R., Hodson, M.E. and Parsons, I. (1998) The role of intragranular microtextures and microstructures in chemical and mechanical weathering: direct comparisons of experimentally and naturally weathered alkali feldspars. Geochimica et Cosmochimica Acta, 62, 27712788.CrossRefGoogle Scholar
Mackenzie, W.S. (1952) The effect of temperature on the symmetry of high temperature soda-rich feldspars. American Journal of Science, Bowen volume, 319342.Google Scholar
Mackenzie, W.S. (1957) The crystalline modifications of NaAlSi3O8 . American Journal of Science, 255, 481516.CrossRefGoogle Scholar
MacKenzie, W.S. and Zussman, J. editors (1974) The Feldspars. Manchester University Press, UK, xi + 717 pp.Google Scholar
McDowell, S.D. (1986) Composition and structural state of coexisting feldspars, Salton Sea geothermal field. Mineralogical Magazine, 50, 7584.CrossRefGoogle Scholar
Martin, R.F. (1969) The hydrothermal synthesis of low albite. Contributions to Mineralogy and Petrology, 23, 323339.CrossRefGoogle Scholar
Milliken, K.L. (1989) Petrography and composition of authigenic feldspars, Oligocene Frio Formation, South Texas. Journal of Sedimentary Petrology, 59, 361374.CrossRefGoogle Scholar
Montgomery, C.W. and Brace, W.F. (1975) Micropores in plagioclase. Contributions to Mineralogy and Petrology, 52, 1728.CrossRefGoogle Scholar
Morse, S.A. (1970) Alkali feldspars with water at 5 kb pressure. Journal of Petrology, 11, 221251.CrossRefGoogle Scholar
Müller, G. (1971) Der Einfluss der Al,Si-Verteilung auf die Mischungslücke der Alkali feldspäte. Contributions to Mineralogy and Petrology, 34, 7379.CrossRefGoogle Scholar
Owen, D.C. and McConnell, J.D.C. (1974) Spinodal unmixing in an alkali feldspar. Pp. 424439 in: The Feldspars (MacKenzie, W.S., and Zussman, J., editors). Manchester University Press, UK.Google Scholar
Parsons, I. (1978) Feldspars and fluids in cooling plutons. Mineralogical Magazine, 42, 117.CrossRefGoogle Scholar
Parsons, I., editor (1994) Feldspars and their Reactions. NATO ASI Series C 421. Kluwer Academic Publishers, Dordrect, The Netherlands, xxx + 650 pp.CrossRefGoogle Scholar
Parsons, I. and Boyd, R. (1971) Distribution of potassium feldspar polymorphs in intrusive sequences. Mineralogical Magazine, 38, 295311.CrossRefGoogle Scholar
Parsons, I. and Brown, W.L. (1984) Feldspars and the thermal history of igneous rocks. Pp. 317371 in: Feldspars and Feldspathoids. Structures, Properties and Occurrences (Brown, W.L., editor). NATO ASI Series C 137. D. Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Parsons, I. and Lee, M.R. (2005) Minerals are not just chemical compounds. The Canadian Mineralogist, 43, 19591992.CrossRefGoogle Scholar
Parsons, I. and Lee, M.R. (2009) Mutual replacement reactions in alkali feldspars I: microtexures and mechanisms. Contributions to Mineralogy and Petrology, 157, 641661.CrossRefGoogle Scholar
Parsons, I., Lee, M.R. and Smith, J.V. (1998) Biochemical evolution: II. Origin of life in tubular microstructures on weathered feldspar surfaces. Proceedings of the National Academy of Sciences USA, 95, 1517315176.Google ScholarPubMed
Parsons, I., Thompson, P., Lee, M.R. and Cayzer, N. (2005) Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis. Journal of Sedimentary Research, 75, 921942.CrossRefGoogle Scholar
Parsons, I., Magee, C.W., Allen, C.M., Shelley, J.M.G. and Lee, M.R. (2009) Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. Contributions to Mineralogy and Petrology, 157, 663687.CrossRefGoogle Scholar
Parsons, I., Fitz Gerald, J.D., Lee, J.K.W., Ivanic, T. and Golla-Schindler, U. (2010) Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating. Contributions to Mineralogy and Petrology, 160, 155180.CrossRefGoogle Scholar
Putnis, A. (1992) Introduction to Mineral Sciences. Cambridge University Press, UK, 457 pp.CrossRefGoogle Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Putnis, A. (2009) Mineral replacement reactions. Pp. 87124 in: Thermodynamics and Kinetics of Water- Rock Reaction (Oelkers, E.H. and Schott, J., editors). Reviews in Mineralogy and Geochemistry, 70. Mineralogical Society of America, Chantilly, Virginia and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Putnis, A. and Salje, E. (1992) Tweed microstructures: experimental observations and some theoretical models. Phase Transitions, 48, 85105.CrossRefGoogle Scholar
Putnis, A., Hinrichs, R., Putnis, C.V., Golla-Schindler, U. and Collins, L.G. (2007) Hematite in porous redclouded feldspars: Evidence of large-scale crustal fluid-rock interaction. Lithos, 95, 1018.CrossRefGoogle Scholar
Ribbe, P.H. editor (1983) Feldspar Mineralogy. Reviews in Mineralogy, 2. Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Ribbe, P.H. (1983) Chemistry, structure and nomenclature of feldspars. Pp. 119 in: Feldspar Mineralogy (Ribbe, P.H., editor). Reviews in Mineralogy 2. Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Schairer, J.F. (1950) The alkali-feldspar join in the system NaAlSiO4–KAlSiO4-SiO2 . Journal of Geology, 58, 512517.CrossRefGoogle Scholar
Seck, H. (1971) Koexistierende Alkalifeldspäte und Plagioklase im system NaAlSi3O8–KAlSi3O8–CaAl2Si2O8-H2O bei Temperaturen von 650°C bis 900°C. Neues Jahrbuch für Mineralogie, Abhandlungen, 115, 315345.Google Scholar
Sipling, P.J. and Yund, R.A. (1976) Experimental determination of the coherent solvus for sanidinehigh albite. American Mineralogist, 61, 897906.Google Scholar
Smith, J.V. (1974 a) Feldspar Minerals vol. 1, Crystal Structure and Physical Properties. Springer-Verlag, Berlin, xix + 627 pp.Google Scholar
Smith, J.V. (1974 b) Feldspar Minerals vol. 2, Chemical and Textural Properties. Springer-Verlag, Berlin, xii + 690 pp.Google Scholar
Smith, J.V. and Brown, W.L. (1988) Feldspar Minerals vol. 1, Crystal Structure, Physical, Chemical and Microtextural Properties (Second Revised and Extended Edition). Springer-Verlag, Berlin, xvii + 828 pp.Google Scholar
Smith, K.L. and McLaren, A.C. (1983) TEM investigation of a microcline from a nepheline syenite. Physics and Chemistry of Minerals, 10, 6976.CrossRefGoogle Scholar
Smith, P. and Parsons, I. (1974) The alkali-feldspar solvus at 1 kilobar water vapour pressure. Mineralogical Magazine, 39, 747767.CrossRefGoogle Scholar
Snow, E. and Yund, R.A. (1988) Origin of cryptoperthites in the Bishop Tuff and their bearing on its thermal history. Journal of Geophysical Research, 93, 89758984.CrossRefGoogle Scholar
Su, S.-C., Ribbe, P.H. and Bloss, F.D. (1986) Alkali feldspars: structural state determined from composition and optic axial angle 2V. American Mineralogist, 71, 12851296.Google Scholar
Taroev, V., Göttlicher, J., Kroll, H., Kashaev, A., Suvarova, L., Pentinghaus, H., Bernotat-Wulff, H., Breit, U., Tauson, V. and Lashkevich, V. (2008) Synthesis and structural state of K-feldspars in the system K[AlSi3O8]-K[FeSi3O8]. European Journal of Mineralogy, 20, 635651.CrossRefGoogle Scholar
Taylor, W.H. (1933) The structure of sanidine and other feldspars. Zeitschrift für Kristallographie, 85, 425442.Google Scholar
Waldron, K.A., Parsons, I. and Brown, W.L. (1993) Solution-redeposition and the orthoclase-microcline transformation: evidence from granulites and relevance to 18O exchange. Mineralogical Magazine, 57, 687695.CrossRefGoogle Scholar
Waldron, K.A., Lee, M.R. and Parsons, I. (1994) The microstructure of perthitic alkali feldspars revealed by hydrofluoric acid etching. Contributions to Mineralogy and Petrology, 116, 360364.CrossRefGoogle Scholar
Walker, F.D.L., Lee, M.R. and Parsons, I. (1995) Micropores and micropermeable texture in alkali feldspars: geochemical and geophysical implications. Mineralogical Magazine, 59, 507536.CrossRefGoogle Scholar
Wen, S.X. and Nekvasil, H. (1994) Solvcalc - an interactive graphics program package for calculating the ternary feldspar solvus and for 2-feldspar geothermometry. Computers and Geosciences, 20, 10251040.CrossRefGoogle Scholar
Wenk, H.-R. (1979) An albite-anorthite assemblage in low-grade amphibolite facies rocks. American Mineralogist, 64, 12941299.Google Scholar
Willaime, C. and Gandais, M. (1972) Study of exsolution in alkali feldspars. Calculation of elastic stresses inducing periodic twins. Physica Status Solidi A, 9, 529539.Google Scholar
Willaime, C. and Brown, W.L. (1974) A coherent elastic model for the determination of the orientation of exsolution boundaries: application to the feldspars. Acta Crystallographica A, 30, 313331.Google Scholar
Worden, R.H., Walker, F.D.L., Parsons, I. and Brown, W.L. (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contributions to Mineralogy and Petrology, 104, 507515.CrossRefGoogle Scholar
Yoder, H.S., Stewart, D.B. and Smith, J.R. (1957) Feldspars. Carnegie Institution Washington Yearbook, 56, 206214.Google Scholar
Yuguchi, T. and Nishiyama, T. (2007) Cooling process of a granitic body deduced from the extents of exsolution and deuteric sub-solidus reaction: Case study of the Okueyama granitic body, Kyushu, Japan. Lithos, 97, 395421.CrossRefGoogle Scholar
Yund, R.A. (1974) Coherent exsolution in the alkali feldspars. Pp. 173183 in: Geochemical Transport and Kinetics (Hoffmann, A.W., Gilletti, B.J., Yoder, H.S. Jr. and Yund, R.A., editors). Carnegie Institution of Washington publication 634.Google Scholar
Yund, R.A. (1984) Alkali feldspar exsolution: kinetics and dependence on alkali interdiffusion. Pp. 281315 in: Feldspars and Feldspathoids. Structures, Properties and Occurrences (Brown, W.L., editor). NATO ASI Series C 137. D.Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar