Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-10-07T04:49:13.768Z Has data issue: false hasContentIssue false

Extending the mineralogy of U6+ (I): Crystal structure of lepersonnite-(Gd) and a description of the new mineral lepersonnite-(Nd)

Published online by Cambridge University Press:  14 July 2025

Jakub Plášil*
Affiliation:
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Gwladys Steciuk
Affiliation:
Université de Lorraine, CNRS, Nancy, France
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Prague, Czech Republic
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
Pavel Uher
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, Slovakia
Martin Ondrejka
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, Slovakia
Radek Škoda
Affiliation:
Section Minéralogie, Musée d’Histoire Naturelle, Luxembourg
Zdeněk Dolníček
Affiliation:
Department of Mineralogy and Petrology, National Museum, Prague, Czech Republic
Simon Philippo
Affiliation:
Department of Physics and Materials Science, University of Luxembourg, Luxembourg
Mael Guennou
Affiliation:
Department of Geological Sciences, Masaryk University, Brno, Czech Republic
Nicolas Meisser
Affiliation:
Département de géologie, Muséum cantonal des sciences naturelles (Naturéum), Université de Lausanne (UNIL), Lausanne, Switzerland;
Jan Rohlíček
Affiliation:
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Florias Mees
Affiliation:
Royal Museum for Central Africa, Tervuren, Belgium
*
Corresponding author: Jakub Plášil; Email: plasil@fzu.cz

Abstract

Two uranyl carbonate silicate minerals have been studied in detail, lepersonnite-(Gd) and the new mineral lepersonnite-(Nd). Both minerals originate from Katanga province in the Democratic Republic of Congo (Africa): lepersonnite-(Gd) from the Shinkolobwe mine (type locality) and lepersonnite-(Nd) from the Swambo mine (type locality) and Shinkolobwe mine. Each occurs as radial to acicular aggregates composed of long prismatic, thin crystals, as the products of hydration–oxidation weathering of uraninite. A detailed description of the chemical and physical properties of lepersonnite-(Nd) is provided, including the thermal analysis of the -(Gd) member. Moreover, Raman and infrared spectroscopy data are provided for both minerals. The crystal structure of lepersonnite-(Gd) has been solved based on 3D electron diffraction data. According to the best dataset at 95 K, lepersonnite-(Gd) is orthorhombic, with a = 11.838(134) Å, b = 15.822(333) Å, c = 39.147(190) Å and V = 7353(282) Å3 (Z = 4). The dynamic refinement of the crystal structure (Robs/wRobs = 0.1204/0.1088 and Rall/wRall = 0.1204/0.1088 for 3090/50507 observed/all reflections and 247 refined parameters) revealed a large complex sheet structure with structural units defining a new lepersonnite topology. It contains infinite sheets of uranyl polyhedra, planar CO3 groups, protonated Si-tetrahedra, and Gd3+ polyhedra, and a thick interlayer hosted with H2O and partially occupied Ca2+ sites. Based on the structure refinement, bond-valence considerations, and new electron microprobe data, we infer that the ideal formula of lepersonnite-(Gd) is [Ca0.5Gd0.5(H2O)18(OH)1.5] [Gd(UO2)12(SiO3OH)2(CO3)4(OH)10O2(H2O)5]. On the basis of their closely related powder X-ray diffraction patterns and the similar behaviour of Nd and Gd, we expect the two minerals to adopt the same structures, apart from Ca, which was absent in lepersonnite-(Nd). The ideal formula for lepersonnite-(Nd) is [Nd(H2O)18(OH)2][Nd(UO2)12(SiO3OH)2(CO3)4(OH)10O2(H2O)5].

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Oleg I Siidra

We dedicate this paper to Michel Deliens, our dear friend and colleague, on the occasion of his 85th birthday.

References

Åmli, R. and W.L, Griffin. (1975) Microprobe analysis of REE minerals using empirical correction factors. American Mineralogist, 60, 599606.Google Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Blatov, V.A., Shevchenko, A.P. and Proserpio, D.M. (2014) Applied topological analysis of crystal structures with the program package ToposPro. Crystal Growth & Design, 14, 35763586.Google Scholar
Brázda, P., Klementová, M., Krysiak, Y. and Palatinus, L. (2022) Accurate lattice parameters from 3D electron diffraction data. I. Optical distortions. International Union of Crystallography Journal, 9, 121.Google Scholar
Burnham, C.W. (1962) Lattice constant refinement. Carnegie Institute Washington Yearbook, 61, 132135.Google Scholar
Burns, P.C. (1999) A new complex sheet of uranyl polyhedra in the structure of wölsendorfite. American Mineralogist, 84, 16611673.Google Scholar
Burns, P.C., Miller, M.L. and Ewing, R.C. (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures. The Canadian Mineralogist, 34, 845880.Google Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Ewing, R.C., editors). Mineralogy and Geochemistry, Vol. 38. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Colmenero, F., Plášil, J. and Sejkora, J. (2019) The layered uranyl silicate mineral uranophane-beta: crystal structure, mechanical properties, Raman spectrum and comparison with the alpha-polymorph. Dalton Transactions, 48, 1672216736.Google Scholar
Deliens, M. and Piret, P. (1981) La swamboite, nouveau silicate d´uranium hydrate du Shaba, Zaire. The Canadian Mineralogist, 19, 553557.Google Scholar
Deliens, M. and Piret, P. (1982) Bijvoetite et lepersonnite, carbonates hydrates d’uranyle et de terres rares de Shinkolobwe, Zaïre. The Canadian Mineralogist, 20, 231238.Google Scholar
Derricks, J.J. and Oosterbosch, R. (1958) The Swambo and Kalongwe deposits compared to Shinkolobwe: contribution to the study of Katanga uranium. Proceedings of the Second International Conference on Peaceful Uses of Atomic Energy, Geneva, 2, 663695.Google Scholar
Frost, R.L., Čejka, J., Weier, M.L., Martens, W. and Kloprogge, J.T. (2006) A Raman and infrared spectroscopic study of the uranyl silicates-weeksite, soddyite and haiweeite. Spectrochimica Acta A, 64, 308315.Google Scholar
Gagné, O. and F.C, Hawthorne. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gemmi, M. and Lanza, A.E. (2019) 3D electron diffraction techniques. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75, 495504.Google Scholar
Gemmi, M., Mugnaioli, E., Gorelik, T.E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. and Abrahams, J.P. (2019) 3D electron diffraction: The nanocrystallography revolution. ACS Central Science, 5, 13151329.Google Scholar
Gurzhiy, V.V., Kalashnikova, S.A., Kuporev, I.V. and Plášil, J. (2021) Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals, 11, 704.Google Scholar
Khouchen, M., Klar, P.B., Chintakindi, H., Suresh, A. and Palatinus, L. (2023) Optimal estimated standard uncertainties of reflection intensities for kinematical refinement from 3D electron diffraction data. Acta Crystallographica, A79, 427439.Google Scholar
Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica, A68, 393398.Google Scholar
Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275326.Google Scholar
Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemistry, International Edition, 53, 654661.Google Scholar
Krivovichev, S.V. (2016) Structural complexity and configurational entropy of crystals. Acta Crystallographica, B72: 274276.Google Scholar
Krivovichev, S.V. (2017) Hydrogen bonding and structural complexity of the Cu3(AsO4)(OH)3 polymorphs (clinoclase, gilmarite): a theoretical study. Journal of Geosciences, 62, 7985.Google Scholar
Li, Y., Burns, P.C. and Gault, R.A. (2000) A new rare-earth element uranyl carbonate sheet in the structure of bijvoetite-(Y). The Canadian Mineralogist, 38, 153162.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Lussier, A.J., Lopez, R.A. and Burns, P.C. (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. The Canadian Mineralogist, 54, 177283.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.Google Scholar
Olds, T.A., Plášil, J., Kampf, A.R., Simonetti, A., Sadergaski, L.R., Chen, Y.S. and Burns, P.C. (2017) Ewingite: Earth’s most complex mineral. Geology, 45, 10071010.Google Scholar
Ondruš, P. (1993) A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, EPDIC–2, Enchede, 133–136, 297300.Google Scholar
Palatinus, L. (2013) The charge-flipping algorithm in crystallography. Acta Crystallographica, B69, 116.Google Scholar
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.Google Scholar
Palatinus, L., Corrêa, C.A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M.C., Cámara, F. and Prtříček, V. (2015a) Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallographica, B71, 740751.Google Scholar
Palatinus, L., Petříček, V. and C.A, Correâ. (2015b) Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Crystallographica, A71, 235244.Google Scholar
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. and Klementová, M. (2019) Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallographica, B75, 512522.Google Scholar
Petříček, V., Palatinus, L., Plášil, J. and Dušek, M. (2023) Jana2020 – a new version of the crystallographic computing system Jana. Zeitschrift für Kristallographie, 238, 271282.Google Scholar
Plášil, J. (2017) Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium. American Mineralogist, 102, 17711775.Google Scholar
Plášil, J. and Petříček, V. (2017) Crystal structure of the (REE)-uranyl carbonate mineral kamotoite-(Y). Mineralogical Magazine, 81, 653660.Google Scholar
Plášil, J., Petříček, V., Locock, A.J., Škoda, R. and Burns, P.C. (2017) The (3 + 3) commensurately modulated structure of the uranyl silicate mineral swamboite-(Nd), Nd0.333[(UO2)(SiO3OH)](H2O)2.41. Zeitschrift für Kristallographie, 233, 223232.Google Scholar
Plášil, J., Kampf, A.R., Škoda, R., Philippo, S., Guennou, M. and Mees, F. (2021) Lepersonnite-(Nd), IMA 2021-066, CNMNC Newsletter 64. Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2021.93.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantitation. Springer US, Boston, MA, USA.Google Scholar
Rigaku (2023) CrysAlis CCD and CrysAlis RED. Rigaku-Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Siidra, O., Zenko, D.S. and Krivovichev, S.V. (2014) Structural complexity of lead silicates: crystal structure of Pb21[Si7O22]2[Si4O13] and its comparison to hyttsjöite. American Mineralogist, 99, 817823.Google Scholar
Steciuk, G., Škoda, R., Rohlíček, J. and Plášil, J. (2020) Crystal structure of the uranyl–molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)∼5.0: Insights from a precession electron-diffraction tomography study. Journal of Geosciences, 65, 1525.Google Scholar
Steciuk, G., Sejkora, J., Čejka, J., Plášil, J. and Hloušek, J. (2021) Krupičkaite, Cu6[AsO3(OH)]6·8H2O, a new copper arsenate mineral from Jáchymov (Czech Republic). Journal of Geosciences, 66, 3750.Google Scholar
Steciuk, G., Majzlan, J., Rohlíček, J., Škoda, R., Sejkora, J. and Plášil, J. (2024) Znucalite, the only known zinc uranyl carbonate: its crystal structure and environmental implications. American Mineralogist, 109, 949959.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart ISBN 3-510-65188-X.Google Scholar
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271282.Google Scholar
Supplementary material: File

Plášil et al. supplementary material

Plášil et al. supplementary material
Download Plášil et al. supplementary material(File)
File 58.9 KB