Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T22:13:43.480Z Has data issue: false hasContentIssue false

Euhedral tetrataenite in the Jelica meteorite

Published online by Cambridge University Press:  05 July 2018

Alan E. Rubin*
Affiliation:
Institute of Geophysics and Planetary Physics, University of California, Los Angeles CA 90024, USA

Abstract

A 65 × 107 µm grain of euhedral tetrataenite (ordered FeNi) attached to a similarly sized grain of troilite occurs within an impact-melt rock clast in the Jelica LL6 chondrite breccia. After impact melting, immiscible metallic Fe-Ni and troilite droplets formed within the silicate melt progenitor of the clast. At ⩾1200°C while the surrounding silicate was still partly molten, euhedral taenite with ∼ 50 wt.% Ni began crystallizing in one of the metal-troilite droplets. Troilite nucleated at one edge of the euhedral taenite grain and began to crystallize at ∼870°C. At 320°C the metal phase underwent an ordering reaction and formed tetrataenite. The unrecrystallized clast-host boundary and the differences in olivine composition and degree of polycrystallinity of troilite between the clast and Jelica host indicate that the clast was incorporated into Jelica during a late-stage brecciation event.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Christophe Michel-Lévy, M. (1979) La pierre de Sena: des informations sur les conditions de formation des chondrites a bronzite. Bull. Mineral, 102, 410–4.Google Scholar
Christophe Michel-Lévy, M. (1981) Some clues to the history of H-group chondrites. Earth Planet Sci. Lett., 54, 67–80.Google Scholar
Clanton, U. S., McKay, D. S., Laughon, R. B. and Ladle, G. H. (1973) Iron crystals in lunar breccias. Proc. Lunar Sci. Conf., 4, 925–931.Google Scholar
Clarke, R. S. and Scott, E. R. D. (1980) Tetrataenite — ordered FeNi, a new mineral in meteorites. Anter. Mineral., 65, 624–3.Google Scholar
Duke, M. B. (1965) Metallic iron in basaltic achondrites. J. Geophys. Res., 70, 1523-7.Google Scholar
Fodor, R. V. and Keil, K. (1975) Implications of poikilitic textures in LL-group chondrites. Me-teoritics, 10, 325–39.Google Scholar
Freer, R. (1981) Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contrib. Mineral. Petrol. 76, 440-54.Google Scholar
Frondel, C, Klein, C, Ito, J. and Drake, J. C. (1970) Mineralogical and chemical studies of Apollo 11 lunar fines and selected rocks. Proc. Apollo 11 Lunar Sci. Conf., 11, 445–74.Google Scholar
Frost, B. R. (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J. Petrol., 26, 31–63.Google Scholar
Glass, B. P. (1971) Investigation of glass recovered from Apollo 12 sample 12057. J. Geophys. Res., 76, 5649-57.Google Scholar
Glass, B. P. (1982) Nickel-iron octahedral crystals in North American microtektites (abstract). Meteori-tics, 17, 221–2.Google Scholar
Gooding, J. L. (1979) Petrogenetic properties of chondrules in unequilibrated H-, L-, and LL-group chondritic meteorites. Ph.D. dissertation, Univ. New Mexico.Google Scholar
Goodrich, C. A. and Bird, J. M. (1985) Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disko Island: The role of carbon in mafic magmas. Geology, 93, 475–92.Google Scholar
Graham, A. L., Bevan, A. W. R. and Hutchison, R. (1985) Catalogue of Meteorites, 4th ed., Univ. of Arizona Press, 460 pp.Google Scholar
Heiken, G. H., Vaniman, D. T. and French, B. M.(eds)(1991) Lunar Sowcebook: A User's Guide to the Moon, Cambridge University Press, 736 pp.Google Scholar
Housley, R. M. (1981) SEM, optical and Mossbauer studies of submicrometer chromite in Allende. Proc. Lunar Planet. Sci. Conf, 12B, 1069-1077.Google Scholar
Ivanov, A. V. (1989) The meteorite Kaidun: Composition and history of formation. Geokhi-miya, 259-66.Google Scholar
Jurewicz, A. J. G, Jones, J. H., Weber, E. T. and Mittlefehldt, D. W. (1993) Partial melting of ordinary chondrites: Lost City (H) and St. Severin (LL) (abstract). Lunar Planet. Sci., 24, 739–40.Google Scholar
Kallemeyn, G. W., Rubin, A. E., Wang, D. and Wasson, J. T. (1989) Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations, and composition—petrographic type relationships. Geochim. Cosmochim. Ada, 53, 2747-67.Google Scholar
Krishnarao, J. S. R. (1964) Native nickel-iron alloy, its mode of occurrence, distribution and origin. Econ. Geol., 59, 443–8.Google Scholar
Kullerud, G. (1963) The Fe-Ni-S system. Carnegie Inst. Wash. Yearbook, 62, 175–89.Google Scholar
Kullerud, G., Yund, R. A. and Moh, G. H. (1969) Phase relations in the Cu-Fe-S, Cu-Ni-S, and Fe-Ni-S systems. In Magmatic Ore Deposits, H. D. B. Wilson (Ed.), pp. 323-43. Econ.Geol. Monographs.Google Scholar
Nagata, T., Kaito, C, Saito, Y. and Funaki, M. (1991) Tetrataenite in chondrites and experimental demonstration on formation of tetrataenite fine grains. Proc. NIPR Symp. Anatarct. Meteor-ites, 4, 404–19.Google Scholar
Nickel, E. H. and Nichols, M. C. (1991) Mineral Reference Manual, Van Nostrand Reinhold, 250 pp.Google Scholar
Olsen, E. J. (1981) Vugs in ordinary chondrites. Meteoritics, 16, 45–59.Google Scholar
Reuter, K. B., Williams, D. B. and Goldstein, J. I. (1988) Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochim. Cosmochim. Ada, 52, 617–26.Google Scholar
Rubin, A. E. (1985) Impact melt products of chondritic material. Rev. Geophys, 23, 277—300.Google Scholar
Rubin, A. E. (1990) Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relation-ships. Geochim. Cosmochim. Ada, 54, 1217—32.Google Scholar
Rubin, A. E. (1991) Euhedral awaruite in the Allende meteorite: Implications for the origin of awaruite-and magnetite-bearing nodules in CV3 chondrites. Amer. Mineral., 76, 1356–62.Google Scholar
Scott, E. R. D., Lusby, D. and Keil, K. (1985) Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites. Proc. Lunar Planet. Sci. Conf., 16, D137-48.Google Scholar
Sears, D. W. and Axon, H. J. (1976) Metal of high Co content in LL chondrites. Meteoritics, 11, 97—100.Google Scholar
Stöffler, D., Keil, K. and Scott, E. R. D. (1991) Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Ada, 55, 3845—67.Google Scholar