Hostname: page-component-7857688df4-qjfxt Total loading time: 0 Render date: 2025-11-19T10:39:38.640Z Has data issue: false hasContentIssue false

Electrum dendrites from the Ametistovoe epithermal deposit, Kamchatka, Russia

Published online by Cambridge University Press:  14 July 2025

Olga Yu Plotinskaya*
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS), Moscow, Russia
Vladimir V. Shilovskikh
Affiliation:
Resource Center of Geoenvironmental Research & Modelling GEOMODEL, St. Petersburg State University, St. Petersburg, Russia
Elena O. Groznova
Affiliation:
Institute of Experimental Mineralogy, Russian Academy of Sciences (IEM RAS), Chernogolovka, Moscow oblast’, Russia
Lyudmila Yu. Kryuchkova
Affiliation:
Research Centre for X-ray Diffraction Studies, St. Petersburg State University, St. Petersburg, Russia
Reimar Seltmann
Affiliation:
Department of Earth Science, Natural History Museum, London, UK
*
Corresponding author: Olga Yu Plotinskaya; Email: plotin@igem.ru

Abstract

Electrum dendrites and associated minerals from the Ametistovoe Au–Ag epithermal deposit (Kamchatka) were investigated by optical and electron microscopy, X-ray computed tomography, electron microprobe and electron back-scattered diffraction techniques. Electrum forms dendrites up to 1 mm in size within sphalerite, or, rarely, within galena and chalcopyrite and random particles within quartz. The electrum has a very homogeneous composition (fineness 603 to 615) which correlates neither with the host mineral nor with the electrum morphology. X-ray computed microtomography showed electrum dendrites are 2-dimensional and consist of an acicular ‘trunk’ hosting numerous ‘branches’. 3-dimensional and ‘bush-like’ dendrites are rare. Angles between ‘trunk’ and ‘branches’ are usually 90° and less commonly, 60° suggesting twinning along (100) and (111) planes, respectively. Electron back-scattered diffraction showed the dendrites are single crystals with no defects detected, whereas electrum within quartz has a mosaic texture with low pattern quality. A model proposed for the observed phenomena includes: (1) growth of single-crystal electrum dendrites within silica gel; (2) overgrowth of dendrites by sphalerite crystals; (3) recrystallisation of the opaline silica to crystalline quartz which resulted in destruction of electrum dendrites located within silica and preservation of those hosted by sphalerite. This model proposes crystallisation of electrum dendrites from a hydrothermal solution and implies a critical role for amorphous silica gel as a precursor for dendrite formation.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Ferdinando Bosi

References

Bailey, S.W. (1988) Chlorites: structures and crystal chemistry. Pp. 347403 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W. editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Barton, P.B. and Toulmin, P. (1964) The electrum – tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems. Geochimica et Cosmochimica Acta, 28, 619640.CrossRefGoogle Scholar
Bauer, P., Mougin, K., Faye, D., Buch, A., Ponthiaux, P. and Vignal, V. (2020) Synthesis of 3D dendritic gold nanostructures assisted by a templated growth process: application to the detection of traces of molecules. Langmuir, 36, 1101511027. doi: 10.1021/acs.langmuir.0c01857.CrossRefGoogle Scholar
Betekhtin, A.G., Genkin, A.D., Filimonova, A.A. and Shadlun, T.N. (1958) Ore Textures and Structures. Gosgeoltekhizdat, Moscow, 444 pp. [in Russian].Google Scholar
Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. Pp. 117130 in: Fluid Inclusions in Minerals, Methods and Applications (Vivo, B. De and Frezzotti, M.L. editors), Virginia Tech, Blacksburg, USA.Google Scholar
Borisova, Е.А. (2010) Native gold from Mutnovskoe ore occurrence, South-Eastern Kamchatka, Russia. New Data on Minerals, 45, 6671.Google Scholar
Bortnikov, N.S. and Tolstykh, N.D. (2023) Epithermal deposits of Kamchatka, Russia. Geology of Ore Deposits, 65 (Suppl 1), S124S152. doi: 10.1134/S1075701523070176.CrossRefGoogle Scholar
Boydell, H.C. (1925) The role of colloidal solutions in the formation of mineral deposit. Institutions of Mining and Metallurgy Transactions, 34, 145337.Google Scholar
Brodusch, N., Demers, H., and Gauvin, R. (2018) Imaging with a commercial electron backscatter diffraction (EBSD) camera in a scanning electron microscope: A review. Journal of Imaging, 4, 88.CrossRefGoogle Scholar
Burke, M., Rakovan, J. and Krekeler, M. P. (2017) A study by electron microscopy of gold and associated minerals from Round Mountain, Nevada. Ore Geology Reviews, 91, 708717.CrossRefGoogle Scholar
Butt, C.R., Hough, R.M. and Verrall, M. (2020) Gold nuggets: the inside story. Ore and Energy Resource Geology, 4, 100009.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorite and illites as a function of temperature. Clay Minerals, 23, 471485.CrossRefGoogle Scholar
Chapman, R.J., Banks, D.A., Styles, M.T., Walshaw, R.D., Piazolo, S., Morgan, D.J., Grimshaw, M.R., Spence-Jones, C.P., Matthews, T.J. and Borovinskaya, O. (2021) Chemical and physical heterogeneity within native gold: implications for the design of gold particle studies. Mineralium Deposita, 56, 15631588. doi: 10.1007/s00126-020-01036-x.CrossRefGoogle Scholar
Chukhrov, F.V. (1955) Colloids in the Earth’s Crust. Izvestiya Akademii Nauk SSSR Moscow. 672 pp. [in Russian].Google Scholar
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73, 47614791.CrossRefGoogle Scholar
Crawford, M.L. (1981) Phase equilibria in aqueous fluid inclusions. Pp. 75100 in: Fluid Inclusions: Applications to Petrology (Hollister, L.S. and Crawford, M.L. editors), 6. Mineralogical Association of Canada Short Course Handbook.Google Scholar
Dong, G., Morrison, G. and Jaireth, S. (1995) Quartz textures in epithermal veins, Queensland; classification, origin and implication. Economic Geology, 90, 18411856.CrossRefGoogle Scholar
Filimonova, O.N., Trigub, A.L., Tonkacheev, D.E., Nickolsky, M.S., Kvashnina, K.O., Chareev, D.A., Chaplygin, I.V., Lafuerza, S., and Tagirov, B. R. (2019) Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals. Mineralogical Magazine, 83, 435451.CrossRefGoogle Scholar
Frondel, C. (1938) Solubility of colloidal gold under hydrothermal conditions. Economic Geology, 33, 120.CrossRefGoogle Scholar
Götze, J., Berek, H. and Schäfer, K. (2019) Micro-structural phenomena in agate/chalcedony: Spiral growth. Mineralogical Magazine, 83, 281291.CrossRefGoogle Scholar
Granovsky, А.G. (1993) The Ametistovoe gold-silver deposit (Kamchatka) – thermobarogeochemistry and exploration potential. Ores and Metals, (1–2), 8797 [in Russian].Google Scholar
Grimshaw, M., Chapman, R.J. and Pearce, M.A. (2017) Characterization of the crystallography of gold using EBSD. Applied Earth Science, 126, 6061.CrossRefGoogle Scholar
Han, X., Wang, D., Huang, J., Liu, D. and You, T. (2011) Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 354, 577584.CrossRefGoogle ScholarPubMed
Herrington, R.J. and Wilkinson, J.J. (1993) Colloidal gold and silica in mesothermal vein systems: Geology, 21, 6, 539542.2.3.CO;2>CrossRefGoogle Scholar
Huang, D., Qi, Y., Bai, X., Shi, L., Jia, H. Zhang, D. and Zheng, L. (2012) One-pot synthesis of dendritic gold nanostructures in aqueous solutions of quaternary ammonium cationic surfactants: effects of the head group and hydrocarbon chain length. ACS Applied Materials & Interfaces, 4, 46654671.CrossRefGoogle ScholarPubMed
Jhabvala, J Boillat, E and Glardon, R. (2011) On the use of EBSD analysis to investigate the microstructure of gold samples built by selective laser melting. Gold Bulletin, 44, 113118.CrossRefGoogle Scholar
Jones, B. (2021) Siliceous sinters in thermal spring systems: Review of their mineralogy, diagenesis, and fabrics. Sedimentary Geology, 413, 105820.CrossRefGoogle Scholar
Kotelnikov, A.R., Suk, N.I., Kotelnikova, Z.A., Tschekina, T.I. and Kalinin, G.M. (2012) Mineral geothermometers for low temperature paragenesis. Vestnik Otdelenia nauk o Zemle, 4, NZ9001, doi:10.2205/2012NZ_ASEMPG.Google Scholar
Kozin, A.K., Stepanov, S.Y., Palamarchuk, R.S., Shilovskikh, V.V. and Zhdanova, V.S. (2023) Mineral Associations of Concentrates from Gold-Bearing Placers of the Miass Placer Zone (South Urals) and Possible Primary Sources of Gold. Russian Geology and Geophysics, 64, 10151030.CrossRefGoogle Scholar
Kranidiotis, P. and McLean, W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposits, Matagami Quebec. Economic Geology, 82, 18981911.CrossRefGoogle Scholar
Liang, Y., and Hoshino, K. (2015) Thermodynamic calculations of AuxAg1− x–Fluid equilibria and their applications for ore-forming conditions. Applied Geochemistry, 52, 109117.CrossRefGoogle Scholar
Lin, T.H., Lin, C.W., Liu, H.H., Sheu, J.T. and Hung, W.H. (2011) Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chemical communications, 47, 20442046.CrossRefGoogle ScholarPubMed
Lindgren, W. (1915) Geology and mineral deposits of the National Mining district, Nevada. U.S. Geological Survey Bulletin, 601, 58 pp.Google Scholar
Litvinov, A.F., Patoka, M.G., Markovsky, B.F., Frolov, Y.F., Koliada, A.A., Pozdee, A.I., Pavlova, L.E. (1999) Mineral resources map of the Kamchatka oblast, scale 1:500 000. Brief explanatory note. VSEGEI publisher, Petropavlovsk-Kamchatsky, 563 pp. [in Russian].Google Scholar
Liu, H. and Beaudoin, G. (2021) Geochemical signatures in native gold derived from Au-bearing ore deposits. Ore Geology Reviews, 132, 104066.CrossRefGoogle Scholar
Maitland, T. and Sitzman, S. (2007) EBSD technique and materials characterization. Pp. 4176 in: Scanning microscopy for nanotechnology: Techniques and applications (Zhou, W. and Wang, Z.L. editors). Springer, New York.Google Scholar
McNab, R.R., Brugger, J., Voisey, C.R. and Tomkins, A.G. (2024) Coprecipitation of amorphous silica and gold nanoparticles contributes to gold hyperenrichment. Geology, 52, 737741. doi: 10.1130/G52138.1.CrossRefGoogle Scholar
Monecke, T., Reynolds, T.J., Taksavasu, T., Tharalson, E.R., Zeeck, L.R., Guzman, M., Gissler, G. and Sherlock, R. (2023) Natural growth of gold dendrites within silica gels. Geology, 51, 189192.CrossRefGoogle Scholar
Morrison, G.W., Rose, W.J. and Jaireth, S. (1991) Geological and geochemical controls on the silver content (fineness) of gold in gold–silver deposits. Ore Geology Reviews, 6, 333364.CrossRefGoogle Scholar
Nedrav, (2025) Deep East Mineral Deposits. Available at: https://nedradv.ru/nedradv/ru/places [Accessed 25 Mar. 2025].Google Scholar
Nekrasov, I.Ya. (1996) Volcano-cupola structure of the Ametist Deposit and zonality of gold-silver mineralization. Doklady Earth Sciences, 347A, 382384.Google Scholar
Northover, S.M. and Northover, J.P. (2012) Applications of Electron Backscatter Diffraction (EBSD) in Archaeology, Pp 76–85. In: Historical Technology, Materials and Conservation: SEM and Microanalysis. (Meeks, N., Cartwright, C., Meek, A. and Mongiatti, A. editors). Archetype Publications, London.Google Scholar
Novgorodova, M.I. (2005) Metacolloidal gold. New Data on Minerals. 40, 106114.Google Scholar
Pal’yanova, G. (2008). Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chemical Geology, 255, 399413.CrossRefGoogle Scholar
Palyanova, G., Kutyrev, A., Beliaeva, T., Shilovskikh, V., Zhegunov, P., Zhitova, E. and Seryotkin, Y. (2023) Pd,Hg-Rich Gold and Compounds of the Au-Pd-Hg System at the Itchayvayam Mafic-Ultramafic Complex (Kamchatka, Russia) and Other Localities. Minerals, 13, 549. doi: 10.3390/min13040549.CrossRefGoogle Scholar
Petrenko, I.D. (1999) Gold-silver formations of Kamchatka. Petropavlovsk-Kamchatskii: St-Peterburg Cartographic Factory VSEGEI. 115 pp. [in Russian].Google Scholar
Petrovskaya, N.V. (1973) Native Gold. Nauka, Moscow, 345 pp. [in Russian].Google Scholar
Petrovskaya, N.V., Novgorodova, M.I., Frolova, K.E. and Tsepin, A.I. (1977) Nature of Heterogeneity and Phase Composition of Endogenic Native Gold. Pp. 7588. In: Neodnorodnost’ mineralov i tonkie mineral’nye smesi (Heterogeneity of Minerals and Fine Mineral Mixtures). Nauka, Moscow, [in Russian].Google Scholar
Potter, R.W. II (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. Journal of Research of the U.S. Geological Survey, 5, 603607.Google Scholar
Prior, D.J., Boyle, A.P. Brenker, F. Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G.J., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J. and Zetterstrom, L. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 17411759.CrossRefGoogle Scholar
Ramdohr, P. (1969) The Ore Minerals and their Intergrowths. Pergamon Press, Oxford, UK, 1174 pp.Google Scholar
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, Washington D.C.Google Scholar
Saunders, J.A. (1990) Colloidal transport of gold and silica in epithermal precious metal systems: evidence from the Sleeper deposit, Humboldt County, Nevada. Geology, 18, 757760.2.3.CO;2>CrossRefGoogle Scholar
Saunders, J.A. and Burke, M. (2017) Formation and aggregation of gold (electrum) nanoparticles in epithermal ores. Minerals, 7, 163.CrossRefGoogle Scholar
Saunders, J.A. and Schoenly, P.A. (1995) Fractal structure of electrum dendrites in bonanza epithermal Au–Ag deposits. Pp. 251261. In: Fractals in the earth sciences. Springer US, Boston, MA.CrossRefGoogle Scholar
Saunders, J.A., Burke, M. and Brueseke, M.E. (2020) Scanning-electron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA. Mineralium Deposita, 55, 389398.CrossRefGoogle Scholar
Schwartz, A.J., Kumar, M., Adams, B.L. and Field, D.P. (2009) Electron backscatter diffraction in materials science. Springer, New York, 393 pp.CrossRefGoogle Scholar
Scott, S.D. (1983) Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineralogical Magazine, 47, 427435.CrossRefGoogle Scholar
Shikazono, N. (1985) A comparison of temperatures estimated from the electrum–sphalerite–pyrite–argentite assemblage and filling temperatures of fluid implications from epithermal Au–Ag vein-type deposits in Japan. Economic Geology, 80, 14151424.CrossRefGoogle Scholar
Sillitoe, R.H. and Hedenquist, J.W. (2003) Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Society of Economic Geologists Special Publication, 10, 315343.Google Scholar
Simmons, S.F., White, N.C. and John, D.A. (2005) Geological characteristics of epithermal precious and base metal deposits. Economic Geology 100th Anniversary Volume, 100, 485522.Google Scholar
Taksavasu, T., Monecke, T. and Reynolds, T.J. (2018) Textural characteristics of non-crystalline silica in sinters and quartz veins: implications for the formation of bonanza veins in low-sulfidation epithermal deposits. Minerals, 8, 331.CrossRefGoogle Scholar
Tauson, V.L. and Lipko, S.V. (2020) Solubility of gold in common gold-concentrating minerals. Russian Geology and Geophysics, 61, 13311344.CrossRefGoogle Scholar
Tharalson, E.R., Taksavasu, T., Monecke, T., Reynolds, T.J., Kelly, N.M., Pfaff, K., Bell, A.S. and Sherlock, R. (2023) Textural characteristics of ore mineral dendrites in banded quartz veins from low-sulfidation epithermal deposits: implications for the formation of bonanza-type precious metal enrichment. Mineralium Deposita, 58, 13951419.CrossRefGoogle Scholar
Tonkacheev, D.E., Chareev, D.A., Abramova, V.D., Kovalchuk, E.V., Vikentyev, I.V. and Tagirov, B.R. (2019) The substitution mechanism of Au in In-, Fe- and In-Fe-bearing synthetic crystals of sphalerite, based on the data from EPMA and LA-ICP-MS study. Litosfera, 19, 148161. doi: 10.24930/1681-9004-2019-19-1-148-161.Google Scholar
Van den Heuvel, D.B., Gunnlaugsson, E., Gunnarsson, I., Stawski, T.M., Peacock, C.L. and Benning, L.G. (2018) Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines. Geothermics, 76, 231241.CrossRefGoogle Scholar
Vartanyan, S.S., Oreshin, V.Y. and Khvorostov, V.P. (1988) The Ametistovoe deposit. Pp. 244250. In: Gold deposits of the USSR. V.4. Geology of gold deposits of the East of the USSR (Narseev, V.A., Timofeevsky, D.A. and Yanovsky, V.M. editors). TSNIGRI publisher, Moscow [in Russian].Google Scholar
Yuan, Y.J., Andrews, M.K. and Marlow, B.K. (2004) Chaining and dendrite formation of gold particles. Applied Physics Letters, 85, 130132.CrossRefGoogle Scholar
Zeeck, L.R., Monecke, T., Reynolds, T.J., Tharalson, E.R., Pfaff, K., Kelly, N.M. and Hennigh, Q.T. (2021) Textural characteristics of barren and mineralized colloform quartz bands at the low-sulfidation epithermal deposits of the Omu camp in Hokkaido, Japan: Implications for processes resulting in bonanza-grade precious metal enrichment. Economic Geology, 116, 407425.Google Scholar
Supplementary material: File

Plotinskaya et al. supplementary material 1

Plotinskaya et al. supplementary material
Download Plotinskaya et al. supplementary material 1(File)
File 2.3 MB
Supplementary material: File

Plotinskaya et al. supplementary material 2

Plotinskaya et al. supplementary material
Download Plotinskaya et al. supplementary material 2(File)
File 20.2 MB
Supplementary material: File

Plotinskaya et al. supplementary material 3

Plotinskaya et al. supplementary material
Download Plotinskaya et al. supplementary material 3(File)
File 234.4 MB