Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T14:19:36.013Z Has data issue: false hasContentIssue false

Description and crystal structure of a new mineral – plimerite, ZnFe3+4(PO4)3(OH)5 – the Zn-analogue of rockbridgeite and frondelite, from Broken Hill, New South Wales, Australia

Published online by Cambridge University Press:  05 July 2018

P. Elliott*
Affiliation:
School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia SouthAustralian Museum, NorthTerrace, Adelaide, South Australia 5000, Australia
U. Kolitsch
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, A-1010 Wien, Austria
G. Giester
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
E. Libowitzky
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
C. McCammon
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
A. Pring
Affiliation:
SouthAustralian Museum, NorthTerrace, Adelaide, South Australia 5000, Australia
W. D. Birch
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
J. Brugger
Affiliation:
School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia SouthAustralian Museum, NorthTerrace, Adelaide, South Australia 5000, Australia

Abstract

Plimerite, ideally Zn (PO4)3(OH)5, is a new mineral from the Block 14 Opencut, Broken Hill, New SouthWales. It occurs as pale-green to dark-olive-green, almost black, acicular to prismatic and bladed crystals up to 0.5 mm long and as hemispherical aggregates of radiating acicular crystals up to 3 mm across. Crystals are elongated along [001] and the principal form observed is {100} with minor {010} and {001}. The mineral is associated with hinsdalite-plumbogummite, pyromorphite, libethenite, brochantite, malachite, tsumebite and strengite. Plimerite is translucent with a pale-greyish-green streak and a vitreous lustre. It shows an excellent cleavage parallel to {100} and {010} and distinct cleavage parallel to {001}. It is brittle, has an uneven fracture, a Mohs’ hardness of 3.5–4, D(meas.) = 3.67(5) g/cm3 and D(calc.) = 3.62 g/cm3 (for the empirical formula). Optically, it is biaxial negative with α = 1.756(5), β = 1.764(4), γ = 1.767(4) and 2V(calc.) of –63º; pleochroism is X pale-greenish-brown, Y pale-brown, Z pale-bluish-green; absorption Z > X > Y; optical orientation XYZ = cab. Plimerite is orthorhombic, space group Bbmm, unit-cell parameters: a = 13.865(3) Å, b = 16.798(3) Å, c = 5.151(10) Å, V = 1187.0(4) Å3 (single-crystal data) and Z = 4. Strongest lines in the X-ray powder diffraction pattern are [d (A˚ ), I, hkl]: 4.638, (50), (111); 3.388, (50), (041); 3.369, (55), (131); 3.168, (100), (132); 2.753, (60), (115); 2.575, (90), (200); 2.414, (75), (220); 2.400, (50), (221); 1.957, (40), (225). Electron microprobe analysis yielded (wt.%): PbO 0.36, CaO 0.17, ZnO 20.17, MnO 0.02, Fe2O3 29.82, FeO 2.98, Al2O3 4.48, P2O5 32.37, As2O5 0.09, H2O (calc) 6.84, total 97.30 (Fe3+/Fe2+ ratio determined by Mössbauer spectroscopy). The empirical formula calculated on the basis of 17 oxygens is Ca0.02Pb0.01Zn1.68Al0.60P3.09As0.01O17.00H5.15. The crystal structure was solved by direct methods and refined to an R1 index of 6.41% for 1332 observed reflections from single-crystal X-ray diffraction data (Mo-Kα radiation, CCD area detector). The structure of plimerite is isotypic with that of rockbridgeite and is based on face-sharing trimers of (Mϕ6) octahedra which link by sharing edges to form chains, that extend in the b-direction. Chains link to clusters comprising pairs of corner-sharing (Mϕ6) octahedra that link to PO4 tetrahedra forming sheets parallel to (001). The sheets link via octahedra and tetrahedra corners into a heteropolyhedral framework structure. The mineral name honours Professor Ian Plimer for his contributions to the study of the geology of ore deposits.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthauer, G. and Rossman, G.R. (1984) Mixed valence of iron in minerals with cation clusters. Physics and Chemistry o f Minerals, 11, 37—51.Google Scholar
Atencio, D., Coutinho, J.M.V., Mascarenhas, Y.P. and Ellena, J.A. (2006) Matioliite, the Mg-analogue of burangaite, from Gentil mine, Mendes Pimentel, Minas Gerais, Brazil, and other occurrences. American Mineralogist, 91, 19321936.CrossRefGoogle Scholar
Bancroft, G.M., Maddock, A.G. and Burns, R.G. (1967) Applications of the Mossbauer effect to silicate mineralogy-I. Iron silicates of known crystal structure. Geochimica et Cosmochimica Acta, 31, 22192246.CrossRefGoogle Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. Pp. 3152 in: Structure and Bonding in Crystals II(M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.CrossRefGoogle Scholar
Birch, W.D. (1990) Minerals from the Kintore and Block 14 Opencuts, Broken Hill, N.S.W.; a review of recent discoveries, including tsumebite, kipushite and otavite. Australian Mineralogist, 5, 125141 Google Scholar
Birch, W.D. (1999) The Minerals. Pp. 88256 in: Minerals of Broken Hill(W.D. Birch, editor). Broken Hill Council, Broken Hill, Australia.Google Scholar
Birch, W.D. and van der Heyden, A. (1988) Minerals of the Kintore Opencut, Broken Hill, New South Wales. Mineralogical Record, 19, 425436.Google Scholar
Birch, W.D. and van der Heyden, A. (1997) Minerals from the Kintore and Block 14 Open cuts, Broken Hill, New South Wales. Australian Journal of Mineralogy, 3, 2371.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B, 47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica B, 41, 244247.CrossRefGoogle Scholar
Brown, I.D. (1996) VALENCE: a program for calculating bond-valences. Journal of Applied Crystallography, 29, 479480.CrossRefGoogle Scholar
Campbell, J.L. (1881) On dufrenite from Rockbridgeite Co., Va. American Journal of Science, 22, 6567.CrossRefGoogle Scholar
Frondel, C. (1949) The dufrenite problem. American Mineralogist, 34, 513540.Google Scholar
Ginzburg, A.I. (1952) The phosphates of granite pegmatites. Trudy Mineralogicheskogo Muzeya Akademiya Nauk SSSR, 4, 3663.Google Scholar
Guiseppetti, G. and Tadini, C. (1983) Lazulite, (Mg, Fe)Al2(OH)2(PO4)2: structure refinement and hydrogen bonding. Neues Jahrbuch fur Mineralogie Monatshefte, 410416.Google Scholar
Hirson, J.R. (1965) Nota sobre os fosfatos de Sapucaia. Anais da Academia Brasileira de Ciencias, 37, 471475.Google Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp. 123253 in: Phosphates: Geochemical, Geobiological, and Materials Importance(Kohn, M.J., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Johnson, J.E. (1978) Zinc phosphate minerals from Reaphook Hill, South Australia. Australian Mineralogist, 1, 6568.Google Scholar
Katz, L. and Lipscomb, W.N. (1951) The crystal structure of iron lazulite, a synthetic mineral related to lazulite. Acta Crystallographica, 4, 345348.CrossRefGoogle Scholar
Kolitsch, U. (2004) The crystal structures of kidwellite and ‘laubmannite’, two complex fibrous iron phosphates. Mineralogical Magazine, 68, 147165.CrossRefGoogle Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab- initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Le Bail, A., Stephens, P.W. and Hubert, F. (2003) A crystal structure for the souzalite/gormanite series from synchrotron powder diffraction data. European Journal of Mineralogy, 15, 719723.CrossRefGoogle Scholar
Lindberg, M.L. (1949) Frondelite and the frondelite- rockbridgeite series. American Mineralogist, 34, 541549.Google Scholar
Lindberg, M.L. and Frondel, C. (1950) Zincian rockbridgeite. American Mineralogist, 35, 10281034.Google Scholar
Lindberg, M.L. and Christ, C.L. (1959) Crystal structures of the isostructural minerals lazulite, scorzalite and barbosalite. Acta Crystallographica, 12, 695697.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV: The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Massie, F.A. (1880) On the composition of dufrenite from Rockbridgeite Co., Va. Chemical News, 42, 181.Google Scholar
Moore, P.B. (1969) The basic ferric phosphates: a crystallochemical principle. Science, 164, 10631064.CrossRefGoogle Scholar
Moore, P.B. (1970) Crystal chemistry of the basic iron phosphates. American Mineralogist, 55, 135169.Google Scholar
Moore, P.B. and Kampf, A.R. (1992) Beraunite: Refinement, comparative crystal chemistry, and selected bond valences. Zeitschrift fur Kristallographie, 201, 263281.Google Scholar
Moore, P.B., Kampf, A.R. and Irving, A.J. (1974) Whitmoreite, Fe2+Fe2+(OH)2(H2O)4[PO4]2, a new species: Its description and atomic arrangement. American Mineralogist, 59, 900905.Google Scholar
Otwinowski, Z. and Minor, W. (1997) Processing X-ray diffraction data collected in oscillation mode. Pp. 307326 in: Macromolecular Crystallography(C.W. Carter, Jr. and R.M. Sweet, editors). Vol. 276. Academic Press, New York.CrossRefGoogle Scholar
Otwinowski, Z., Borek, D., Majewski, W. and Minor, W. (2003) Multiparametric scaling of diffraction intensities. Acta Crystallographica A, 59, 228234.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ f(pZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis(J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Redhammer, G.J., Tippelt, G., Roth, G., Lottermoser, W. and Amthauer, G. (2000) Structure and Mossbauer spectroscopy of barbosalite Fe2+Fe3+(PO4)2(OH)2 between 80 K and 300 K. Physics and Chemistry of Minerals, 27, 419—429.CrossRefGoogle Scholar
Redhammer, G.J., Roth, G., Tippelt, G., Bernroider, M., Lottermoser, W., Amthauer, G. and Hochleitner, R. (2006) Manganoan rockbridgeite: structure analysis and 57Fe Mossbauer spectroscopy. Acta Crystallographica C, 62, i24—i28.Google Scholar
Rancourt, D.G. and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mossbauer spectroscopy. Nuclear Instruments and Methods in Physics Research B, 58, 85—97.CrossRefGoogle Scholar
Sejkora, J., Skoda, R., Ondru, P., Beran, P. and Siisser, C. (2006a) Mineralogy of phosphate accumulations in the Huber stock, Krasno ore district, Slavkovsk les area, Czech Republic. Journal of the Czech Geological Society, 51, 103—147.Google Scholar
Sejkora, J., Skoda, R. and Ondru, P. (2006b) New naturally occurring mineral phases from Krasno- Horni Slavkov area, western Bohemia, Czech republic. Journal of the Czech Geological Society, 51, 159—187.Google Scholar
Selway, J.B., Cooper, M.A. and Hawthorne, F.C. (1997) Refinement of the crystal structure of burangaite. The Canadian Mineralogist, 35, 1515—1522.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751—767. Shape Software (1997) ATOMS for Windows and Macintosh V 4.0, Kingsport, Tennessee, USA.Google Scholar
Sheldrick, G.M. (1997a) SHELXS-97, a Program for the Solution of Crystal Structures. University of Gottingen, Gottingen, Germany.Google Scholar
Sheldrick, G.M. (1997b) SHELXL-97, a Program for Crystal Structure Refinement. University of Gottingen, Gottingen, Germany.Google Scholar
Sieber, N.H.W., Tillmanns, E. and Hofmeister, W. (1987) Structure of hentschelite, CuFe2(PO4)2(OH)2, a new member of the lazulite group. Acta Crystallographica C, 43, 1855—1857.Google Scholar
Vencato, I., Mascarenhas, Y.P. and Mattievich, E. (1986) The crystal structure of Fe2+Fe3+(PO3OH)4(H2O)4: a new synthetic compound of mineralogic interest. American Mineralogist, 71, 222—226.Google Scholar
Vencato, I., Mattievich, E. and Mascarenhas, Y.P. (1989) Crystal structure of synthetic lipscombite: a redetermination. American Mineralogist, 74, 456—460.Google Scholar
Willis, I.L., Brown, R.E., Stroud, W.J. and Stevens, B.P.J. (1983) The Early Proterozoic Willyama Supergroup: Stratigraphic sub-division and interpretation of high to low grade metamorphic rocks in the Broken Hill Block, N.S.W. Journal of the Geological Society of Australia, 30, 195—224.CrossRefGoogle Scholar
Wilson, A.I.C., editor. (1992) International Tables for Crystallography, C, 883 pp. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
Yakubovich, O.V., Steele I.M., Rusakov, V.S. and Urusov, V.S. (2006) Hole defects in the crystal structure of synthetic lipscombite (Fe4ļFe2+i)[PO4]4O2.7(OH)1.3 and genetic crystal chemistry of minerals of the lipscombite-barbosalite series. Crystallography Reports, 51, 401—411.CrossRefGoogle Scholar
Yvon, K., Jeitschko, W. and Parthe, A.E. (1977) LAZY PULVERIX, a computer program, for calculating X-ray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 73—74.CrossRefGoogle Scholar