Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T10:33:25.362Z Has data issue: false hasContentIssue false

Crystal structures of rhodium-containing erlichmanite–laurite solid solutions (Os1–xyRuxRhyS2: x = 0.09–0.60, y = 0.07–0.10) with unique compositional dependence

Published online by Cambridge University Press:  22 December 2022

Ginga Kitahara*
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Akira Yoshiasa
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Satoko Ishimaru
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Kunihisa Terai
Affiliation:
Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
Makoto Tokuda
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Daisuke Nishio-Hamane
Affiliation:
Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba 277-8581, Japan
Takahiro Tanaka
Affiliation:
Sunagawa-cho, Tachikawa, Tokyo 190-0031, Japan
Kazumasa Sugiyama
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
*
*Author for correspondence: Ginga Kitahara, Email: galaxy.kitahara@gmail.com

Abstract

Rh-rich and Ir-poor erlichmanite–laurite OsS2–RuS2 solid solutions have been discovered at placers in Haraigawa, Misato-machi, Kumamoto, Japan. Microprobe analysis was performed to identify solid solutions containing few sub-components other than Rh. Approximately 10 at.% Rh was found to be present in the solid-solution samples. Structural refinement was performed using four natural samples: Os0.32Ru0.61Rh0.07S2, Os0.49Ru0.43Rh0.08S2, Os0.58Ru0.33Rh0.08S2 and Os0.81Ru0.09Rh0.10S2. The unit-cell parameters for the solid solutions containing Rh from Haraigawa varied from 5.61826(6) to 5.63142(8) Å. The (Os, Ru, Rh)–S distances in the Os1–x–yRuxRhyS2 system were almost constant with a small variation of 0.001 Å. Conversely, the S–S distances varied significantly, with variations approaching 0.1 Å. Rh substitution of Os rather than Ru had a larger impact on the crystal structure. The atomic displacement ellipsoid of both cations and anions was almost spherical, and no elongation along the M–S and S–S bond directions was observed. The bulk Debye temperatures were estimated from the Debye–Waller factor for the sulfide site. The bulk Debye temperatures of pure OsS2 and RuS2 were 688 K and 661 K, respectively, which suggests that the melting point of erlichmanite is higher than that of laurite. The high Debye temperature of OsS2 is inconsistent with the crystallisation of laurite prior to erlichmanite from the primitive magma, which suggests that $f_{\rm S_2}$, rather than temperature, is the main cause of the known crystallisation order. The presence of several percent Rh has a significant effect on the thermal stability of OsS2 and lowers the melting point of the erlichmanite solid solution compared to that of the laurite solid solution.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: František Laufek

References

Ahmed, A.H. and Arai, S. (2003) Platinum-group minerals in podiform chromitites of the Oman ophiolite. The Canadian Mineralogist, 41, 597616.Google Scholar
Andrews, D.R.A. and Brenan, J.M. (2002) Phase-equilibrium constraints on the magmatic origin of laurite+ Ru–Os–Ir alloy. The Canadian Mineralogist, 40, 17051716.Google Scholar
Arai, S. (2012) Podiform chromitites possibly recycled within the mantle. Japanese Magazine of Mineralogical and Petrological Sciences, 41, 247256.Google Scholar
Arai, S., Prichard, H.M., Matsumoto, I. and Fisher, P.C. (1999) Platinum-group minerals in podiform chromitite from the Kamuikotan Zone, Hokkaido, Northern Japan. Resource Geology, 49, 3947.Google Scholar
Arculus, R.J. and Delano, J.W. (1981) Siderophile element abundances in the upper mantle: evidence for a sulfide signature and equilibrium with the core. Geochimica et Cosmochimica Acta, 45, 13311343.Google Scholar
Augé, T. (1985) Platinum-group-mineral inclusions in ophiolitic chromitite from the Vourinos Complex, Greece. The Canadian Mineralogist, 23, 163171.Google Scholar
Augé, T. and Johan, Z. (1988) Comparative study of chromite deposits from Troodos, Vourinos, North Oman and New Caledonia ophiolites. Pp. 267288 in: Mineral Deposits within the European Community (Boissonnas, J. and Omenetto, P., editors). Springer Berlin-Heidelberg, Berlin.Google Scholar
Begizov, V.D., Zavyalov, E.N. and Khvostova, V.P. (1976) Minerals of the erlichmanite–laurite and hollingworthite irarsite series from Ural placers. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 105, 213218.Google Scholar
Bockrath, C., Ballhaus, C. and Holzheid, A. (2004) Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature. Chemical Geology, 208, 265271.Google Scholar
Bowles, J.F.W., Atkin, D., Lambert, J.L.M., Deans, T. and Phillips, R. (1983) The chemistry, reflectance, and cell size of the erlichmanite (OsS2)-laurite (RuS2) series. Mineralogical Magazine, 47, 465471.Google Scholar
Brenan, J.M. and Andrews, D. (2001) High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas. The Canadian Mineralogist, 39, 341360.Google Scholar
Cabri, L.J. (2002) The Geology, Geochemistry, Mineralogy and Mineral Benefication of Platinum-Group Elements. Canadian Institute of Mining, Metallurgy and Petroleum, Canada.Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. and Alvarez, S. (2008) Covalent radii revisited. Dalton Transactions, 2008, 28322838.Google Scholar
Corrivaux, L. and Gilles Laflamme, J.H. (1990) Mineralogie des elements du groupe du platine dans les chromitites de l'ophiolite de Thetford Mines, Quebec. The Canadian Mineralogist, 28, 579595.Google Scholar
Denton, A.R. and Ashcroft, N.W. (1991) Vegard's law. Physical Review, A43, 31613164.Google Scholar
Elliott, N. (1960) Interatomic distances in FeS2, CoS2, and NiS2. Journal of Chemical Physics, 33, 903905.Google Scholar
Ferrario, A. and Garuti, G. (1990) Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy). Mineralogy and Petrology, 41, 125143.CrossRefGoogle Scholar
Foise, J., Kim, K., Covino, J., Dwight, K., Wold, A., Chianelli, R. and Passeretti, J. (1983) Preparation and properties of the systems cobalt ruthenium sulfide (Co1–xRuxS2) and rhodium ruthenium sulfide (Rh1-xRuxS2). Inorganic Chemistry, 22, 6163.Google Scholar
Folmer, J.C.W., Jellinek, F. and Calis, G.H.M. (1988) The electronic structure of pyrites, particularly CuS2 and Fe1−xCuxSe2: An XPS and Mössbauer study. Journal of Solid State Chemistry, 72, 137144.Google Scholar
Furuseth, S., Selte, K. and Kjekshus, A. (1965) Redetermined Crystal Structures of PdAs2, PdSb2, PtP2, PtAs2, PtSb2, a-PtBi2, and AuSb2. Acta Chemica Scandinavica, 19, 735741.Google Scholar
Garuti, G., Gazzotti, M. and Torres-Ruiz, J. (1995) Iridium, rhodium, and platinum sulfides in chromitites from the ultramafic massifs of Finero, Italy, and Ojen, Spain. The Canadian Mineralogist, 33, 509520.Google Scholar
Garuti, G., Zaccarini, F. and Economou-Eliopoulos, M. (1999a) Paragenesis and composition of laurite from chromitites of Othrys (Greece): implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan peninsula. Mineralium Deposita, 34, 312319.Google Scholar
Garuti, G., Zaccarini, F., Moloshag, V. and Alimov, V. (1999b) Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle; an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. The Canadian Mineralogist, 37, 10991115.Google Scholar
Geller, S. and Cetlin, B.B. (1955) The crystal structure of RhSe2. Acta Crystallographica, 8, 272274.Google Scholar
Gervilla, F., Proenza, J.A., Frei, R., González-Jiménez, J.M., Garrido, C.J., Melgarejo, J.C., Meibom, A., Díaz-Martínez, R. and Lavaut, W. (2005) Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150, 589607.Google Scholar
Goldschmidt, V.M. (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. Journal of the Chemical Society (Resumed), 1937, 655673.Google Scholar
González-Jiménez, J.M., Gervilla, F., Kerestedjian, T. and Proenza, J.A. (2007) Postmagmatic evolution of platinum-group and base-metal mineral assemblages in Palaeozoic ophiolitic chromitites from the Dobromirtsi massif, Rhodope Mountains (SE Bulgaria). Pp. 889892 in: Biennial Meeting of the Society for Geology Applied to Mineral Deposits. Dublin, Ireland.Google Scholar
González-Jiménez, J.M., Gervilla, F., Proenza, J.A., Kerestedjian, T., Augé, T. and Bailly, L. (2009) Zoning of laurite (RuS2)–erlichmanite (OsS2): implications for the origin of PGM in ophiolite chromitites. European Journal of Mineralogy, 21, 419432.Google Scholar
Harris, D.C. (1974) Ruthenarsenite and iridarsenite, two new minerals from the Territory of Papua and New Guinea and associated irarsite, laurite and cubic iron-bearing platinum. The Canadian Mineralogist, 12, 280284.Google Scholar
Harris, D.C. and Cabri, L.J. (1991) Nomenclature of platinum-group-element alloys; review and revision. The Canadian Mineralogist, 29, 231237.Google Scholar
Hulliger, F. (1964) Crystal structure and electrical properties of some cobalt-group chalcogenides. Nature, 204, 644646.Google Scholar
Kanmera, K. (1952) The Upper Carboniferous and the Lower Permian of the Hikawa Valley, Kumamoto Pref., Kyushu, Japan. The Journal of Geological Society of Japan, 58, 1732.Google Scholar
Leblanc, M. (1991) Platinum-group elements and gold in ophiolitic complexes: distribution and fractionation from mantle to oceanic floor. Pp. 231260 in: Ophiolite Genesis and Evolution of the Oceanic Lithosphere (Peters, T., Nicolas, A. and Coleman, R.G., editors). Springer, Dordrecht, Netherlands.Google Scholar
Legendre, O. and Augé, T. (1986) Mineralogy of platinum-group mineral inclusions in chromitites from different ophiolite complexes. Pp. 361372 in: Metallogeny of Basic and Ultrabasic Rocks (Gallagher, M.J., Ixer, R.A., Neary, C.R. and Prichard, H.M., editors). Proceedings of the Conference Metallogeny of Basic and Ultrabasic Rocks, held in Edinburgh, Scotland, 9-12 April. The Institution of Mining and Metallurgy, London.Google Scholar
Leonard, B.F., Desborough, G.A. and Page, N.J. (1969) Ore microscopy and chemical composition of some laurites. American Mineralogist, 54, 13301346.Google Scholar
Levien, L., Weidner, D.J. and Prewitt, C.T. (1979) Elasticity of diopside. Physics and Chemistry of Minerals, 4, 105113.Google Scholar
Lutz, H.D., Müller, B., Schmidt, Th. and Stingl, Th. (1990) Structure refinement of pyrite-type ruthenium disulfide, RuS2, and ruthenium diselenide, RuSe2. Acta Crystallographica, C46, 20032005.Google Scholar
Matsumoto, A. (1928) Placer gold and platinum–group minerals from Hokkaido. Journal of the Mining Institute of Japan, 44, 737745.Google Scholar
Melcher, F., Grum, W., Simon, G., Thalhammer, T.V. and Stumpfl, E.F. (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. Journal of Petrology, 38, 14191458.Google Scholar
MertieJr., J.B. (1969) Economic Geology Of The Platinum Metals. U.S. Geological Survey Professional Paper, v. 630. USGS, Colorado, USA.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.Google Scholar
Munson, R.A. (1968) The synthesis of iridium disulfide and nickel diarsenide having the pyrite structure. Inorganic Chemistry, 7, 389390.Google Scholar
Nakagawa, M. and Franco, H.E.A. (1997) Placer Os-Ir-Ru alloys and sulfides; indicators of sulfur fugacity in an ophiolite? The Canadian Mineralogist, 35, 14411452.Google Scholar
Nakagawa, M. and Ohta, E. (1993) Placer platinum–group minerals from ophiolite in Hokkaido. Pp. 133141 in: Professor Jiro ISHII Memorial Volume. Niigata, Japan [in Japanese].Google Scholar
Nakagawa, M., Ohta, E. and Kurosawa, K. (1991) Platinum-group minerals from the Mukawa serpentinite, southern Kamuikotan belt, Japan. Mining Geology, 41, 329335.Google Scholar
Nishio-Hamane, D., Tanaka, T. and Shinmachi, T. (2019) Minakawaite and platinum–group minerals in the placer from the clinopyroxenite area in serpentinite mélange of Kurosegawa belt, Kumamoto Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 114, 252262.Google Scholar
Nowack, E., Schwarzenbach, D. and Hahn, Th. (1991) Charge densities in CoS2 and NiS2 (pyrite structure). Acta Crystallographica, B47, 650659.Google Scholar
Ohta, E. and Nakagawa, M. (1990) Placer PGE alloys from Fukuyama, Hobetsu, Hokkaido, Japan. Bulletin of the Hobetsu Museum, 6, 1523.Google Scholar
Osanai, Y., Yoshimoto, A., Nakano, N., Adachi, T., Kitano, I., Yonemura, K., Sasaki, J., Tsuchiya, N. and Ishizuka, H. (2014) LA-ICP-MS zircon U-Pb geochronology of Paleozoic granitic rocks and related igneous rocks from the Kurosegawa tectonic belt in Kyushu, Southwest Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 43, 7199.Google Scholar
Parthé, E., Hohnke, E. and Hulliger, F. (1967) A new structure type with octahedron pairs for Rh2S3, Rh2Se3 and Ir2S3. Acta Crystallographica, 23, 832840.Google Scholar
Pauling, L. (1940) The Nature of the Chemical Bond. 3rd edition. Cornell University Press, Ithaca, New York, USA, 518 pp.Google Scholar
Rettig, S.J. and Trotter, J. (1987) Refinement of the structure of orthorhombic sulfur, alpha-S8. Acta Crystallographica, C43, 22602262.Google Scholar
Saito, M., Miyazaki, K. and Tsukamoto, H. (2004) Clinopyroxenite in serpentinite mélange of the “Kurosegawa belt” in the Izumi–Tomochi area, Kumamoto Prefecture, central Kyushu. Bulletin of the Geological Survey of Japan, 55, 171179.Google Scholar
Saito, M., Miyazaki, K., Toshimitsu, S. and Hoshizumi, H. (2005) Geology of the Tomochi district. Quadrangle Series, 1:50,000. Geological Survey of Japan, AIST, Tsukuba, Japan.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogennides. Acta Crystallographica, A32, 751767.Google Scholar
Shannon, R.D., O'Keeffee, M. and Navrotsky, A. (1981) Structure and Bonding in Crystals. Academic Press, New York, 5370 pp.Google Scholar
Sheldrick, G.M. (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section, A71, 38.Google Scholar
Snetsinger, K.G. (1971) Erlichmanite (OsS2), a new mineral. American Mineralogist, 56, 15011506.Google Scholar
Stassen, W.N. and Heyding, R.D. (1968) Crystal structures of RuSe2, OsSe2, PtAs2, and α-NiAs2. Canadian Journal of Chemistry, 46, 21592163.Google Scholar
Stingl, Th., Müller, B. and Lutz, H.D. (1992) Crystal structure refinement of osmium(II) disulfide, OsS2. Zeitschrift für Kristallographie – Crystalline Materials, 202, 161162.Google Scholar
Stockman, H.W. and Hlava, P.F. (1984) Platinum-group minerals in alpine chromitites from southwestern Oregon. Economic Geology, 79, 491508.Google Scholar
Sumino, Y. (1979) The elastic constants of Mn2SiO4, Fe2SiO4 and Co2SiO4, and the elastic properties of olivine group minerals at high temperature. Journal of Physics of the Earth, 27, 209238.Google Scholar
Sumino, Y., Nishizawa, O., Goto, T., Ohno, I. and Ojima, M. (1977) Temperature variation of elastic constants of single-crystal forsterite between–190° and 400°C. Journal of Physics of the Earth, 25, 377392.Google Scholar
Sutarno, Knop O. and Reid, K.I.G. (1967) Chalcogenides of the transition elements. V. Crystal structures of the disulfides and ditellurides of ruthenium and osmium. Canadian Journal of Chemistry, 45, 13911400.Google Scholar
Thomassen, L. (1929) Über Kristallstrukturen einiger binärer Verbindungen der Platinmetalle II. Zeitschrift für Physikalische Chemie, 4B, 277287.Google Scholar
Tokuda, M., Yoshiasa, A., Mashimo, T., Arima, H., Hongu, H., Tobase, T., Nakatsuka, A. and Sugiyama, K. (2019) Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures. Zeitschrift für Kristallographie – Crystalline Materials, 234, 371377.Google Scholar
Torres-Ruiz, J., Garuti, G., Gazzotti, M., Gervilla, F. and Hach-Ali, P.F. (1996) Platinum-group minerals in chromitites from the ojen lherzolite massif (Serrania de Ronda, Betic Cordillera, Southern Spain). Mineralogy and Petrology, 56, 2550.Google Scholar
Tredoux, M., Lindsay, N.M., Davies, G. and McDonald, I. (1995) The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel causal mechanism. South African Journal of Geology, 98, 157167.Google Scholar
Unoki, K., Yoshiasa, A., Kitahara, G., Nishiyama, T., Tokuda, M., Sugiyama, K. and Nakatsuka, A. (2021) Crystal structure refinements of stoichiometric Ni3Se2 and NiSe. Acta Crystallographica, C77, 169175.Google Scholar
Weidner, D.J., Wang, H. and Ito, J. (1978) Elasticity of orthoenstatite. Physics of the Earth and Planetary Interiors, 17, 713.Google Scholar
Willis, B.T.M. and Pryor, A.W. (1975) Thermal Vibrations in Crystallography. Cambridge University Press, Cambridge, UK.Google Scholar
Wöhler, F. (1866) Ueber Laurit, ein neues Mineral aus Borneo. Journal für Praktische Chemie, 98, 226228.Google Scholar
Wood, I.G., Knight, K.S., Price, G.D. and Stuart, J.A. (2002) Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powdser diffraction. Journal of Applied Crystallography, 35, 291295.Google Scholar
Yoshiasa, A., Nakatani, T., Nakatsuka, A., Okube, M., Sugiyama, K. and Mashimo, T. (2016) High-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type PbTiO3 phases. Acta Crystallographica Section, B72, 381388.Google Scholar
Yoshiasa, A., Tokuda, M., Kitahara, G., Unoki, K., Isobe, H., Nakatsuka, A. and Sugiyama, K. (2021) Crystal synthesis and Debye temperature determination of PdSb2: Usefulness of single crystal precise structure analysis. Journal of Crystal Growth, 574, 126327.Google Scholar
Supplementary material: File

Kitahara et al. supplementary material

Kitahara et al. supplementary material

Download Kitahara et al. supplementary material(File)
File 1.4 MB