Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T21:56:02.383Z Has data issue: false hasContentIssue false

The crystal structure of comancheite, Hg2+55N3–24 (OH,NH2)4(Cl,Br)34, and crystal-chemical and spectroscopic discrimination of N3– and O2– anions in Hg2+ compounds

Published online by Cambridge University Press:  05 July 2018

M. A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Y. A. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007, USA

Abstract

The crystal structure of comancheite, Hg2+55N3–24(OH, NH2)4(Cl,Br)34, orthorhombic, space group Pnnm, a = 18.414(5), b = 21.328(6), c = 6.6976(19) Å, V = 2630(2) Å3, Z = 1, was solved by direct methods and refined to an R1 index of 4.3% based on 4160 unique observed reflections. In the structure of comancheite, there are nine crystallographically distinct Hg2+ cations, each of which is coordinated by two N3– anions to form near-linear N3––Hg2+–N3– groups. Four other crystallographically distinct Hg2+ cations are coordinated by a mixture of N3–, O2–, (OH) and (NH2) anions, and there is a small amount of [Hg–Hg]2+ dimer. In addition, there are eight crystallographically distinct halogen sites, three of which are completely occupied by Cl, and five of which are occupied by both Cl and Br. The principal anion, N3–, shows a strong preference for tetrahedral coordination by Hg2+, which results in a strongly bonded three-dimensional {–Hg2+–N3––} framework. This framework is both interrupted and contains large interstices that incorporate additional Hg2+ cations, a very small amount of [Hg+–Hg+]2+ dimer and additional anion species, O2–, (OH) and (NH2), that coordinate Hg2+.

Comancheite was described originally as an Hg-oxide mineral. The major change in chemical composition indicated by the present work was approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (Voting Proposal 13-B). The presence of N provides some analytical challenges, particularly in the presence of Hg. New bond-valence parameters were derived for Hg2+–N3– bonds [Ro(N3–) = 1.95] using well refined Hg2+ structures, and this allows discrimination between Hg2+–O2– and Hg2+–N3– bonds based on the valence-sum rule. Comparison of the Raman spectra of several Hg-bearing minerals shows that peaks in the range 500–700 cm–1 are characteristic of Hg2+–N3– stretching vibrations whereas peaks in the range 350–500 cm–1 are characteristic of Hg2+–O2– stretching vibrations; Hg2+–O2– and Hg2+ – N3– bonds may be discriminated on this basis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurivillius, K. and Stålhandske, C. (1976) A neutrondiffraction study of trimercury(II)dihydroxide disulphate monohydrate, Hg3(OH)2(SO4)2·H2O. Zeitschrift für Kristallographie, 144, 115.CrossRefGoogle Scholar
Aurivillius, K. and Stålhandske, C. (1981) X-ray studies on the mercury(II) bromates K2Hg(BrO3)2(NO3)2 and Hg(BrO3)2·2H2O. Acta Chemica Scandinavica, 35, 537544.CrossRefGoogle Scholar
Björnlund, G. (1971) The crystal structure of Hg(OH)BrO3 . Acta Chemica Scandinavica, 25, 16451654.CrossRefGoogle Scholar
Borisov, S.V., Magarill, S.A., Pervukhina, N.V. and Peresypkina, E.V. (2005) Crystal chemistry of mercury oxo- and chalcohalides. Crystallography Reviews, 11, 87123.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Bukvetskii, B.V., Polishchuk, S.A. and Simonov, V.I. (1976) Crystal structure of mercury difluoride dihydrate HgF2(H2O)2 . Koordinatsionnaya Khimiya, 2, 12081212.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2003) The crystal structure of vasilyevite, (Hg2)2+ 10O6I3 (Br,Cl)3(CO3). The Canadian Mineralogist, 41, 11731181.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2009) The crystal structure of tedhadleyite, Hg2+Hg1+ 10O4I2(Cl,Br)2, from the Clear Creek Claim, San Benito County, California. Mineralogical Magazine, 73, 227234.CrossRefGoogle Scholar
Courant, E., Fourquet, J.L. and DePape, R. (1985) The crystal structure of Hg2FeF5(OH)2·H2O. Journal of Solid State Chemistry, 60, 343346.CrossRefGoogle Scholar
Fourquet, J.L., Courant, E., Chevalier, P. and De Pape, R. (1985) Structure of mercury(II) iron(III) fluoride dihydrate, HgFeF5.2H2O. Acta Crystallographica, C41, 165167.Google Scholar
Giester, G., Mikenda, W. and Pertlik, F. (1996) Kleinite from Terlingua, Brewster County, Texas: investigations by single crystal X-ray diffraction, and vibrational spectroscopy. Neues Jahrbuch für Mineralogie, Monatshefte, 1996, 4956.Google Scholar
Göbbels, D. and Wickleder , M.S. (2004) Redetermination of mercury(II) hydroxide chlorate(V). Acta Crystallographica, E60, i40i41.Google Scholar
Golovastikov, N.I. (1984) The crystal structure of mercury fluosilicate Hg2(OH)2SiF6(H2O)2 . Soviet Physics Crystallography, 29, 359360.Google Scholar
Hawthorne, F.C., Cooper, M. and Sen Gupta, P.K. (1994) The crystal structure of pinchite, Hg5Cl2O4 . American Mineralogist, 79, 11991203.Google Scholar
Hawthorne, F.C. Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Johansson, G. and Sandström, M. (1978) The crystal structure of hexaaquamercury (II) perchlorate, [Hg(H2O)6](ClO4)2 . Acta Chemica Scandinavica, A32, 109113.CrossRefGoogle Scholar
Koskenlinna, M. and Valkonen, J. (1996) Mercury(II) selenite hemihydrate. Acta Crystallographica, C52, 10701072.Google Scholar
Koskenlinna, M., Valkonen, J. and Fröhlich, R. (1996) Amminemercury(II) selenite. Acta Crystallographica, C52, 10721074.Google Scholar
Leineweber, A. and Jacobs, H. (2000) Kristallzucht und Strukturverfeinerung von Quecksilber(II)-amidchlorid – HgClNH2 . Zeitschrift für anorganische und allgemeine Chemie, 626, 21432145.3.0.CO;2-Z>CrossRefGoogle Scholar
Martan, H. and Weiss, J . (1984) Metal l - Schwefelstickstoff-Verbindungen. 17. Die Verbindungen HgN2S·NH3 und 2Hg(NH3)2I2·S4N4. Zeitschrift für anorganische und allgemeine Chemie, 515, 225229.CrossRefGoogle Scholar
Molla-Abbassi, A., Eriksson, L., Mink, J., Persson, I., Sandström, M., Skripkin, M., Ullström, A.-S. and Lindqvist-Reis, P. (2002) Structure and bonding of bisaquamercury(II) and trisaquathallium(III) trifluoromethanesulfonate Journal of the Chemical Society, Dalton Transactions, 2002, 43574364.Google Scholar
Morzyk, B., Michalska, D., Wojciechowski W. and Glowiak T. (1999) Molecular structure of the novel 3-coordinated Hg(II) complex, aqua-bis(3,3- Dimethylglutarimidato)mercury (II). Journal of Molecular Structure, 478, 99105.CrossRefGoogle Scholar
Nilsson, K.B., Maliarik, M., Persson, I., Fischer, A. Ullström, A.-S., Eriksson, L. and Sandström, M. (2008) Coordination chemistry of mercury(II) in liquid and aqueous ammonia solution and the crystal structure of tetraamminemercury(II) perchlorate. Inorganic Chemistry, 47, 19531964.CrossRefGoogle ScholarPubMed
Nockemann, P. and Meyer, G. (2002) Bildung von NH4[Hg3(NH)2](NO3)3 und Umwandlung in [Hg2N](NO3). Zeitschrift für anorganische und allgemeine Chemie, 628, 27092714.3.0.CO;2-P>CrossRefGoogle Scholar
Nockemann, P. and Meyer, G. (2003) Zwei Mercuri- Ammin-Komplexe: [Hg(NH3)2][HgCl3]2 und [Hg(NH3)4](ClO4)2 . Zeitschrift für anorganische und allgemeine Chemie, 629, 123128.CrossRefGoogle Scholar
Nolte, M., Pantenburg, I. and Meyer, G. (2006) The monohydrate of basic mercuric nitrate, [Hg(OH)](NO3)(H2O). Zeitschrift für anorganische und allgemeine Chemie, 632, 111113.CrossRefGoogle Scholar
Roberts, A.C., Ansell, H.G. and Dunn, P.J. (1981) Comancheite, a new mercury oxychloride-bromide from Terlingua, Texas. The Canadian Mineralogist, 19, 393396.Google Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Criddle, A.J., Stirling, J.A.R. and Dunning, G.E. (2002) Tedhadleylite, Hg2+Hg1+ 10O4I2(Cl,Br)2, a new mineral from the Clear Creek Claim, San Benito County, California. The Canadian Mineralogist, 40, 909914.CrossRefGoogle Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Gault, R.A., Grice, J.D. and Nikischer, A.J. (2003a) Artsmithite, a new Hg1+B-Al phosphate-hydroxide from the Funderburk Prospect, Pike County, Arkansas, U.S.A. The Canadian Mineralogist, 41, 721725.CrossRefGoogle Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Stirling, J.A.R., Paar, W.H., Stanley, C.J., Dunning, G.E. and Burns, P.C. (2003b) Vasilyevite , (Hg2)2+ 10O6I3Br2Cl(CO3), a new mineral species from the Clear Creek Claim, San Benito, County, California. The Canadian Mineralogist, 41, 11671172.CrossRefGoogle Scholar
Roberts, A.C., Gault, R.A., Paar, W.H., Cooper, M.A., Hawthorne, F.C., Burns, P.C., Cisneros, S. and Foord, E.E. (2005) Terlinguacreekite, Hg2+ 3 O2Cl2, a new mineral species from the Perry Pit, Mariposa Mine, Terlingua Mining District, Brewster County, Texas, U.S.A. The Canadian Mineralogist, 43, 10551060.CrossRefGoogle Scholar
Sandström, M. (1978) An X-ray diffraction and Raman study of chloride, bromide, and iodide complexes of mercury(II) in dimethyl sulfoxide solution and of mercury(II) chloride in methanol solution. Acta Chemica Scandinavia, A32, 627641.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Stålhandske, C. (1978) A neutron diffraction study of mercury(II) selenate monohydrate. Acta Crystallographica, B34, 14081411.CrossRefGoogle Scholar
Stålhandske, C. (1979) Refinement of mercury fluoride hydroxide. Acta Crystallographica, B35, 949951.CrossRefGoogle Scholar
Stålhandske, C. (1980) An X-ray and neutron diffraction study of mercury(II) sulphate monohydrate. Acta Crystallographca, B36, 2326.CrossRefGoogle Scholar
Stöger, B. and Weil, M. (2006) Hydrothermal crystal growth and crystal structures of the mercury(II) chromates(VI) a-HgCrO4, b-HgCrO4, and HgCrO4·H2O. Zeitschrift für Naturforschung B (Journal of Chemical Sciences), 61, 708714.CrossRefGoogle Scholar
Weil, M. (2002a) Hydrothermal single crystal growth and crystal structures of the mercury(II) selenates(VI) HgSeO4, HgSeO4 ·HgO and HgSeO4·2HgO. Zeitschrift für Naturforschung B (Journal of Chemical Sciences), 57b, 10431050.CrossRefGoogle Scholar
Weil, M. (2002b) The channel structure of the mercury(I I ) seleni te(IV) oxide hydrate HgSeO3·HgO·1/6H2O. Acta Crystallographica, C58, i164i166.Google Scholar
Weil, M. (2003) Single crystal growth, crystal structure and thermal behaviour of mercury(II) pyrophosphate dihydrate. Monatshefte für Chemie, 134, 15091518.CrossRefGoogle Scholar
Weil, M. (2005) Crystal structure of the mixed-valent basic mercury nitrate HgI 2(NO3)2·HgI I (OH) (NO3) · HgII (NO3)2·4 HgIIO [= Hg8O4(OH)(NO3)5]. Zeitschrift für anorganische und allgemeine Chemie, 631, 13461348.CrossRefGoogle Scholar
Weil, M., Baumann, S. and Breitinger, D.K. (2008) K2[O(HgSO3)3], a new sulfitomercurate with an [OHg3] core. Acta Crystallographica, C64, i35i37.Google Scholar