Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:31:53.383Z Has data issue: false hasContentIssue false

The crystal structure of ceruleite, CuAl4[AsO4]2(OH)8(H2O)4, from Cap Garonne, France

Published online by Cambridge University Press:  28 February 2018

Stuart J. Mills*
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
Andrew G. Christy
Affiliation:
Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072,Australia
Georges Favreau
Affiliation:
421 Avenue Jean Monnet, 13090 Aix-en-Provence, France

Abstract

The crystal structure of ceruleite, CuAl4[AsO4]2(OH)8(H2O)4, has been solved to an R1 of 0.0307, using the world's largest crystals from the Cap Garonne mine, France. Ceruleite crystallizes in space group P21/n, with the unit cell a = 7.2000(14), b = 11.345(2), c = 9.856(2) Å, β = 105.57(3)°, V = 775.6(3) Å3 and Z = 1. Ceruleite has a unique structure that consists of Al(O,OH)6 octahedra that are sharing edges to form rhombus-shaped tetramers. AsO4 tetrahedra share two corners with one such rhombus and the other two corners with each of two other rhombi, linking them into a very open mesoporous framework. Cu(OH)2(H2O)2 squares lie in the channels and link Al4 rhombi along || b. H2O molecules are also located in the channels.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony Kampf

References

Brese, N.E., O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Bruker (2001) SAINT Version 6.02 (includes XPREP and SADABS). Bruker AXS Inc., Madison,Wisconsin, USA.Google Scholar
Dufet, H. (1900) Sur une nouvelle espèce minérale, la céruléite. Bulletin de la Société Française de Minéralogie, 23, 147150.Google Scholar
Grey, I.E., Mumme, W.G., Price, J.R., Mills, S.J., Macrae, C.M. and Favreau, G. (2014) Ba‒Cu ordering in bariopharmacoalumite-Q2a2b2c from Cap Garonne, France. Mineralogical Magazine, 78, 851860.Google Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132.Google Scholar
Mills, S.J., Rumsey, M.S., Favreau, G., Spratt, J., Raudsepp, M. and Dini, M. (2011) Bariopharmacoalumite, a new mineral species from Cap Garonne, France and Mina Grande, Chile. Mineralogical Magazine, 75, 135144.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., McDonald, A.M., Favreau, G. and Chiappero, P.-J. (2012) Forêtite, a new secondary arsenate mineral from the Cap Garonne mine, France. Mineralogical Magazine, 76, 769775.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Colombo, F. and Price, J.R. (2015) The crystal structure of cyanotrichite. Mineralogical Magazine, 79, 321335.Google Scholar
Mills, S.J., Christy, A.G., Favreau, G. and Galea-Clolus, V. (2017) Multidimensional structural variation in the cyanotrichite family of merotypes: camerolaite-3b-F1. Acta Crystallographica, B73, 950955.Google Scholar
Schmetzer, K., Berdesinski, W., Bank, H. and Kroužek, E. (1976) Neue Untersuchungen an Coeruleit. Neues Jahrbuch für Mineralogie Montashefte, 1976, 418425.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Yu, D., Xue, D. and Ratajczak, H. (2006) Microscopic characteristics of hydrogen bonds of hydrated borates. Physica B, 371, 170176.CrossRefGoogle Scholar
Supplementary material: File

Mills et al. supplementary material

Mills et al. supplementary material

Download Mills et al. supplementary material(File)
File 126.8 KB