Hostname: page-component-7dd5485656-gs9qr Total loading time: 0 Render date: 2025-10-29T06:32:26.923Z Has data issue: false hasContentIssue false

The crystal structure of canfieldite from the Youqialang lead-silver mine, Tibet, China

Published online by Cambridge University Press:  21 May 2025

Xiangping Gu
Affiliation:
School of Gemology and Mineral Resources, Jiangxi Institute of Applied Science and Technology, Nanchang, China School of Geosciences and Infophysics, Central South University, Changsha, China
Jiajing Chen
Affiliation:
School of Gemology and Mineral Resources, Jiangxi Institute of Applied Science and Technology, Nanchang, China
Wenyuan Liu
Affiliation:
Zijin School of Geology and Mining, Fuzhou University, Fuzhou, China
Jiayu Wang
Affiliation:
School of Gemology and Mineral Resources, Jiangxi Institute of Applied Science and Technology, Nanchang, China
Guanghua Liu*
Affiliation:
School of Gemology and Mineral Resources, Jiangxi Institute of Applied Science and Technology, Nanchang, China
*
Corresponding author: Guanghua Liu; Email: gstone1698@gmail.com

Abstract

We present the first precise determination of the crystal structure for natural canfieldite from the Youqialang lead-silver mine in Nagqu, Tibet, China, using X-ray single-crystal and powder diffraction analysis. The structure was determined and refined to R1 = 0.0375 and wR2 = 0.0986 for a total of 14,743 reflections (2090 independent reflections) with a refined structure formula Ag7.94SnS6, compatible with the empirical formula Ag8.01Sn1.10S6 from electron microprobe analyses. Canfieldite is orthorhombic, with space group Pna21, a = 15.3079(4) Å, b = 7.5549(2) Å, c = 10.7038(3) Å, V = 1237.88(6) Å3 and Z = 4. The structure is composed of isolated SnS4 tetrahedra (average Sn–S bond length of 2.378 Å) arranged in a nearly equidistant manner in three-dimensions with Sn–Sn distances from 7.46 Å to 7.75 Å (the distance along the b-axis is equal to b) and the external S atoms outside the SSn4 tetrahedra are located at the centres surrounded respectively by 6 and 4 SnS4 tetrahedra. The Ag atoms are located in the space between SnS4 tetrahedra and external S atoms in tetrahedral, triangular and linear coordinations respectively with average Ag–S distances of 2.682 Å, 2.554 Å and 2.429 Å. The AgS4 tetrahedra, AgS3 triangles and linear AgS2 share corners and/or edges to form a framework which is corner-connected to SnS4 tetrahedra. Site splitting is present for some Ag atoms with the split distances from 0.26 Å to 0.42 Å. The orthorhombic Pna21 structure of natural canfieldite has similar arrangement of SnS4 tetrahedra and external S atoms to the high temperature cubic F$\bar 4$3m structure, but they are significantly different in the locations and bonding styles of Ag atoms with all the Ag atoms being disordered in the latter. The seven strongest lines of powder X-ray diffraction include [d in Å (I/I0) (h k l)]: 3.240 (45.1) (4 1 1); 3.230 (26.8) (2 0 3); 3.107 (28.1) (4 0 2); 3.084 (100) (0 2 2); 2.724 (49.2) (3 1 3); 2.462 (24) (4 1 3); and 1.895 (54.4) (4 2 4).

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Ian Graham

References

Abbasova, V.A., Alverdiyev, I.J., Rahimoglu, E., Mirzoyeva, R.J. and Babanly, M.B. (2017) Phase relations in the Cu8GeS6–Ag8GeS6 system and some properties of solid solutions. Azerbaijan Chemical Journal, 2, 2530.Google Scholar
Bindi, L., Nestola, F., Guastoni, A., Zorzi, F., Peruzzo, L. and Raber, T. (2012) Te-rich canfieldite, Ag8Sn (S, Te)6, from Lengenbach quarry, Binntal, Canton Valais, Switzerland: occurrence, description and crystal structure. The Canadian Mineralogist, 50, 111118.Google Scholar
Bindi, L., Keutsch, F.N., Morana, M. and Zaccarini, F. (2017) Spryite, Ag8(As3+0.5As5+0.5)S6: structure determination and inferred absence of superionic conduction of the first As3+-bearing argyrodite. Physics and Chemistry of Minerals, 44, 7582.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.Google Scholar
Eulenberger, G. (1977) Die Kristallstruktur der Tieftemperaturmodifikation von Ag8GeS6, synthetischer Argyrodit. Monatshefte für Chemie, 108, 901913.Google Scholar
Evain, M., Gaudin, E., Boucher, F., Petříček, V. and Taulelle, F. (1998) Structures and phase transitions of the A7PSe6 (A = Ag, Cu) argyrodite-type ionic conductors. I. Ag7PSe6. Acta Crystallographica, B54, 376383.Google Scholar
Feng, Z.X., , X.B. and Wang, T. (2011) A preliminary study of metallogenesis of Youqialang lead silver deposit, Tibet. Mineral Deposits, 30, 470476 [in Chinese with English abstract]Google Scholar
Gorochov, O. (1968) Les composes Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te). Bulletin de la Societe Chimique de France, 6, 22632275.Google Scholar
Gu, X.P., Watanabe, M., Hoshino, K. and Shibata, Y. (2003) New find of silver tellurosulphides from the Funan gold deposit, East Shandong, China. European Journal of Mineralogy, 15, 147155.Google Scholar
Gu, X.P., Watanabe, M., Xie, X., Peng, S.L., Nakamuta, Y., Ohkawa, M., Hoshino, K., Ohsumi, K. and Shibata, Y. (2008) Chenguodaite (Ag9FeTe2S4): a new tellurosulfide mineral from the gold district of East Shandong Peninsula, China. Chinese Science Bulletin, 53, 35673573.Google Scholar
Gu, X., Wang, Z. and Zhu, W. (2021) Xuwenyuanite, IMA 2021-080. CNMNC Newsletter 64. Mineralogical Magazine, 86, 178182.Google Scholar
Harris, D.C. and Owens, D.R. (1971) A tellurium-bearing canfieldite from Revelstoke, B.C. The Canadian Mineralogist, 10, 895898.Google Scholar
Holland, T.J.B and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.Google Scholar
Ilinca, G. (2022) Charge distribution and bond valence sum analysis of sulfosalts—The ECoN21 Computer Program. Minerals, 12, 924.Google Scholar
Ishii, M., Onoda, M. and Shibata, K. (1999) Structure and vibrational spectra of argyrodite family compounds Cu8SiX6 (X = S, Se) and Cu8GeS6. Solid State Ionics, 121, 1118.Google Scholar
Kvaček, M., Novák, F. and Drábek, M. (1975) Canfieldite and silver-rich tetrahedrite from the Kutná Hora ore district. Neues Jahrbuch für Mineralogie, Monatshefte, 4, 171179.Google Scholar
Lu, R., Mao, J.W., Gao, J.J., Su, H.M. and Zheng, J.H. (2012) Geological characteristics and occurrence of silver in Xiabao Ag-Pb-Zn deposit, Lengshuikeng ore field, Jiangxi Province, East China. Acta Petrologica Sinica, 28, 105121 [in Chinese with English abstract].Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.Google Scholar
Nekrasova, A.N. and Borodaev, Yu.S. (1972) First discovery of Se-bearing canfieldite. Doklady Akademii Nauk SSSR, 203, 907910.Google Scholar
Paar, W.H., Roberts, A.C., Berlepsch, P., Armbruster, T., Topa, D. and Zagler, G. (2004): Putzite, (Cu4.7Ag3.3)8GeS6, a new mineral species from Capillitas, Catamarca, Argentina: description and crystal structure. The Canadian Mineralogist, 42, 17571769.Google Scholar
Penfield, S.L. (1893) On canfieldite a new germanium mineral and on the chemical composition of argyrodite. American Journal of Science, 146, 107113.Google Scholar
Pogodin, A.I., Pop, M.M., Shender, I.O., Studenyak, I.P., Filep, M.J., Malakhovska, T.O., Kokhan, O.P., Babuka, T.Y., Stercho, I.P., Rubish, V.M. and Kopčanský, P. (2022) Effect of structural site disorder on the optical properties of Ag6+x(P1−xGex)S5I solid solutions. Journal of Materials Science: Materials in Electronics, 33, 2187421889.Google Scholar
Rysanek, P.N., Laruelle, P. and Katty, A. (1976) Structure Cristalline de Ag8GeTe6 (γ). Acta Crystallographica, B32, 692697.Google Scholar
Semkiv, I., Ilchuk, H., Pawlowski, B. and Kusnezh, V. (2017) Ag₈SnSe₆ argyrodite synthesis and optical properties. Opto - Electronics Review, 25, 3740.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Slade, T.J., Gvozdetskyi, V., Wilde, J.M., Kreyssig, A., Gati, E., Wang, L.L., Mudryk, Y., Ribeiro, R.A., Pecharsky, V.K., Zaikina, J.V., Bud’ko, S.L. and Canfield, P.C. (2021) A low temperature structural transition in canfieldite, Ag8SnS6, single Crystals. Inorganic Chemistry, 24, 1934519355.Google Scholar
Soeda, A., Watanabe, M., Hoshino, K. and Nakashima, K. (1984) Mineralogy of tellurium-bearing canfieldite from the Tsumo mine, SW Japan and its implications for ore genesis. Neues Jahrbuch für Mineralogie-Abhandlung, 150, 1123.Google Scholar
Tămaş, C.G., Grobety, B., Bailly, L., Bernhardt, H.J. and Minuţ, A. (2014) Alburnite, Ag8GeTe2S4, a new mineral species from the Roşia Montana Au-Ag epithermal deposit, Apuseni Mountains, Romania. American Mineralogist, 99, 5764.Google Scholar
Von Unterrichter, J. and Range, K.J. (1978) Ag8GeTe6, ein Vertreter der Argyroditfamilie. Zeitschrift für Naturforschung, 33b, 866872.Google Scholar
Wang, N. (1978) New data for Ag8SnS6 (canfieldite) and Ag8GeS6 (argyrodite). Neues Jahrbuch für Mineralogie-Monatshefte, 2, 269272.Google Scholar
Zhai, D.G., Bindi, L., Voudris, P.C., Liu, J.J., Tombros, S.F. and Li, K. (2019) Discovery of Se-rich canfieldite, Ag8Sn(S,Se)6, from the Shuangjianzishan Ag-Pb-Zn deposit, NE China: a multimethodic chemical and structural study. Mineralogical Magazine, 83, 419426.Google Scholar
Supplementary material: File

Gu et al. supplementary material 1

Gu et al. supplementary material
Download Gu et al. supplementary material 1(File)
File 169 KB
Supplementary material: File

Gu et al. supplementary material 2

Gu et al. supplementary material
Download Gu et al. supplementary material 2(File)
File 621.1 KB