Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T22:49:59.202Z Has data issue: false hasContentIssue false

Contact metamorphism and fluid movement around the Easky adamellite, Ox Mountains, Ireland

Published online by Cambridge University Press:  05 July 2018

Bruce W. D. Yardley
Affiliation:
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ
C. Barry Long
Affiliation:
Geological Survey of Ireland, 14 Hume Street, Dublin 2, Ireland

Abstract

Contact metamorphism in the aureole of the Easky adamellite produced andalusite at the expense of regional staurolite, kyanite, and garnet. In the inner aureole sillimanite and K-feldspar also grew. Cordierite is only rarely present. Conditions of metamorphism in the inner aureole have been deduced from five independent criteria as 595 ± 30 °C and 2.5 ± 0.5kb. The nearby Lough Talt adamellite was emplaced at slightly higher pressures. Some aureole rocks have undergone oxidation with conversion of regional garnet to magnetite and andalusite. The reacting assemblage buffered ƒO2 near 10−17 bars. It is inferred that oxidation was caused by movement of H2O from the country rocks into the intrusion.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J. R., Phillips, W. E. A., and Molloy, M. A. (1978). J. Earth Sci. R. Dublin Soc. 1, 173-94.Google Scholar
Brown, G. C. and Fyfe, W. S. (1969). Contrib. Mineral Petrol. 28, 310-18.CrossRefGoogle Scholar
Burnham, C. W., Holloway, J. R., and Davis, N. F. (1969). Geol. Soc. America Spec. Paper 132.Google Scholar
Chatterjee, N. D. (1972). Contrib. Mineral. Petrol. 34, 288-303.CrossRefGoogle Scholar
Eugster, H. P., Albee, A. L., Bence, A. E., Thompson, J. B., and Waldbaum, D. R. (1972). J. Petrol. 13, 147-79.CrossRefGoogle Scholar
Ferguson, C. C. and Harvey, P. K. (1979). Proc. Geol. Assoc. 90, 43-50.CrossRefGoogle Scholar
Froese, E. (1973). Can. Mineral, 11, 991-1002.Google Scholar
Helgeson, H. C., Ddany, J. M., Nesbitt, H. W., and Bird, D. K. (1978). Am. J. Sci. 278A, 1229.Google Scholar
Holdaway, M. J. (1971). Am. J. Sci. 271, 97-132.CrossRefGoogle Scholar
Hsu, L. C. (1968). J. Petrol. 9, 40-83.CrossRefGoogle Scholar
Hutcheon, I. (1979). Am. J. Sci. 279, 643-65.CrossRefGoogle Scholar
Lemon, G. G. (1971). Geol. Mag. 108, 193-200.CrossRefGoogle Scholar
Long, C. B. and Max, M. D. (1977). J. Geol. Soc. Lond. 133, 413-32.CrossRefGoogle Scholar
Long, C. B. and Yardley, B. W. D. (1979). Geol. Soc. Lond. Spec. Paper 8, 153-6.CrossRefGoogle Scholar
Max, M. D., Long, C. B., and Sonet, J. (1976). Bull. Geol. Surv. Ireland, 2, 27-35.Google Scholar
Pankhurst, R. J., Andrews, J. R., Phillips, W. E. A., Sanders, I. S., and Taylor, W. E. G. (1976). J. Geol. Soc. Lond. 132, 327-34.CrossRefGoogle Scholar
Phillips, W. E. A. and Andrews, J. R. (1977). Ibid. 134, 417-18.Google Scholar
Potter, R. W., lI, Clynne, M. A., and Brown, D. L. (1978). Econ. Geol. 73, 284-5.Google Scholar
Powell, M. and Power, R. (1977). Mineral. Mag. 41, 253-6.CrossRefGoogle Scholar
Skippen, G. B. (1977). Mineral. Assoc. Can. Short Course Handbook 2, 66-83.Google Scholar
Taylor, H. P. (1977). J. Geol. Soc. Lond. 133, 509-58.CrossRefGoogle Scholar
Taylor, W. E. G. (1968). Proc. R. Irish Acad. 67B, 63-82.Google Scholar
Touret, J. (1977). In Fraser, D. G. (ed.), Thermodynamics in Geology. Reidel, D., Dordrecht, Holland, 203-27.CrossRefGoogle Scholar
Yardley, B. W. D., Leake, B. E., and Farrow, C. M. (1980). J. Petrol. 21, 365-99.CrossRefGoogle Scholar
Yardley, B. W. D., Long, C. B., and Max, M. D. (1979). Geol. Soc. Lond. Spec. Paper 8, 369-74.Google Scholar
Zen, E.-an (1973). Contrib. Mineral. Petrol. 39, 65-80.CrossRefGoogle Scholar