Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:33:16.428Z Has data issue: false hasContentIssue false

Compositional variation of the tennantite–tetrahedrite solid-solution series in the Schwarzwald ore district (SW Germany): The role of mineralization processes and fluid source

Published online by Cambridge University Press:  05 July 2018

S. Staude
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
T. Mordhorst
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
R. Neumann
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
W. Prebeck
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
G. Markl*
Affiliation:
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany

Abstract

The study presents analysis from members of the tennantite–tetrahedrite solid-solution series (‘fahlore’) from 78 locations in the Schwarzwald ore district of SW Germany. Electron microprobe analysis is used to correlate the compositional variations of the fahlores with mineral association, host rock, tectonic history and precipitation mechanisms. Results indicate that most fahlores from gneiss-hosted veins do not have distinctive geochemical characteristics and range from tetrahedrite to tennantite end-member composition with variable trace-element content. However, diagenetically formed fahlore has a near-end-member tennantite composition with very small trace-element content. Red-bed-hosted fahlore formed by fluid mixing is tennantite enriched in Hg that probably has its source in the red-bed sediments. Fahlore formed from granite-related late-magmatic fluids, or from mixing of fluids of which one has equilibrated with granitic basement rocks, is typically As- and Bi-rich (up to 22.2 wt.% Bi). Gneiss-hosted fahlore formed by fluid cooling is Ag-rich near-end-member tetrahedrite. Some fahlores reflect their paragenetic association, e.g. a large Ag content in association with Ag-bearing minerals or a large Co and Ni in association with Co- and Ni-arsenides.

Although they have similar compositions, gneiss-hosted fahlores show systematic variations in Ag contents and Fe/Zn ratios between the Central and the Southern Schwarzwald with Fe-rich fahlore in higher stratigraphic levels (North) and Zn- and Ag-rich fahlore in lower stratigraphic levels (South). We show that fahlore composition varies with precipitation mechanism (cooling vs. mixing vs. diagenesis), depth of formation, paragenetic association and host rock. Comparison with fahlores from other European occurrences indicates that these conclusions are consistent with fahlore systematics found elsewhere, and could be used to infer details of ore-forming processes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altherr, R., Holl, A., Hegner, E., Langer, C. and Kreuzer, H. (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50, 5173.CrossRefGoogle Scholar
Arlt, T. and Diamond, L.W. (1998) Composition of tetrahedrite-tennantite and ‘schwazite’ in the Schwaz silver mines, North Tyrol, Austria. Mineralogical Magazine, 62, 801820.CrossRefGoogle Scholar
Baatartsogt, B., Schwinn, G., Wagner, T., Taubald, H., Beitter, T. and Markl, G. (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids, 7, 123147.CrossRefGoogle Scholar
Bachmann, H.G. (2004) Das Silber aus dem Stein bekommen: Archäometallurgische Überlegungen zum Nordschwarzwälder Hüttenwesen. Pp. 8198 in: Silber Kupfer Kobalt - Bergbau im Schwarzwald. (Markl, G. and Lorenz, S., editors). Markstein Verlag, Filderstadt, Germany.Google Scholar
Behr, H.J. and Gerler, J. (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany: A study by neutron activation analysis. Chemical Geology, 61, 6577.CrossRefGoogle Scholar
Bliedtner, M. and Martin, M. (1986) Erz- und Minerallagerstätten des Mittleren Schwarzwaldes. LGRB, Freiburg, Germany.Google Scholar
Brewer, M.S. and Lippolt, H.J. (1974) Petrogenesis of basement rocks of the Upper Rhine region elucidated by rubidium-strontium systematics. Contributions to Mineralogy and Petrology, 45, 123141.CrossRefGoogle Scholar
Förster, H.J. and Rhede, D. (2004) Mineralogy of the Niedersehlema-Alberoda U-Se-polymetallic deposit, Erzgebirge, Germany. III. First indication of complete miscibility between tennantite and giraudite. The Canadian Mineralogist, 42, 17191732.CrossRefGoogle Scholar
Franzke, H.J. and Werner, W. (1994) Wie beeinflußte die Tektonik des Kristallins und des Rheingrabens die hydrothermalen Gangstrukturen des Schwarzwaldes. Abhandlungen des geologischen Landesamtes Baden-Württemberg, 14, 99118.Google Scholar
Fußwinkel, T. and Prebeck, W. (2009) Hydrothermalgänge zwischen Neuenweg und Sulzburg, Südscharzwald. Diploma Thesis, University of Tübingen, Germany.Google Scholar
Geyer, O.F. and Gwinner, M.P. (1986) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart, Germany.Google Scholar
Goldenberg, G. and Steuer, H. (2004) Mittelalterlicher Silberbergbau im Südschwarzwald. Pp. 4580 in: Silber Kupfer Kobalt - Bergbau im Schwarzwald. (Markl, G. and Lorenz, S., editors). Markstein Verlag, Filderstadt, Germany.Google Scholar
Goldenberg, G., Maass, A., Steffens, G. and Steuer, H. (2003) Hematite mining during the Linear Ceramics Culture in the area of the Black Forest, South West Germany. Der Anschnitt Beiheft, 16, 179186.Google Scholar
Guth, A. (2009) Turmalin und W-, Bi-, Sn-Vererzungen am Roβgrabeneck, Zentralschwarzwald - petrologische und geochemische Untersuchungen. Diploma Thesis, University of Tübingen, Germany.Google Scholar
Hofmann, B. (1980) Blei-, Zink-, Kupfer- und Arsenvererzungen im Wellengebirge (unterer Muschelkalk, Trias) am südlichen und östlichen Schwarzwaldrand. Mitteilung der Naturforschenden Gesellschaft Schaffhausen, 31, 157196.Google Scholar
Hofmann, B. (1989) Erzmineralien in paläozoischen, mesozoischen und tertiären Sedimenten der Nordschweiz und Südwestdeutschlands. Schweizer Mineralogische und Petrologische Mitteilungen, 69, 345357.Google Scholar
Huck, K.H. (1984) Die Beziehung zwischen Tektonik und Paragenese unter Berücksichtigung geochemischer Kriterien in der Fluβ- und Schwerspatlagerstätte ‘Clara’ bei Oberwolfach/Schwarzwald. Dissertation, University of Heidelberg, Germany.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1986) Compositional trends in tetrahedrite. The Canadian Mineralogist, 24, 385397.Google Scholar
Kalt, A., Altherr, R. and Hanel, M. (2000) The Variscan basement of the Schwarzwald. European Journal of Mineralogy, 12, (Bh 2), 143.Google Scholar
Kesten, D. and Werner, W. (2006) Erläuterungen zu den Blättern L 7516 Freudenstadt und L 7518 Rottenburg a. N. – Karte der mineralischen Rohstoffe von Baden-Württemberg 1:50 000. LGRB, Freiburg, Germany.Google Scholar
Klemm, L., Pettke, T., Graeser, S., Mullis, J. and Kouzmanov, K. (2004) Fluid mixing as the cause of sulphide precipitation at Albrunpass, Binn Valley, Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 189212.Google Scholar
Kluth, G.C. (1965) Die Kupfer-Wismut-Erze des mittleren Schwarzwaldes und ihre Geschichte. Dissertation, University of Heidelberg, Germany.Google Scholar
Krupp, R.E. (1988) Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C. Geochimica et Cosmochimica Acta, 52, 30053015.CrossRefGoogle Scholar
Lipp, U. (2003) Wismut-, Kobalt-, Nickel- und Silbererze im Nordteil des Schneeberger Lagerstättenbezirkes. Bergbau in Sachsen, 10, 1209.Google Scholar
Lüders, V. (1994) Geochemische Untersuchungen an Gangartmineralen aus dem Bergbaurevier Freiamt–Sexau und dem Badenweiler-Quarzriff (Schwarzwald). Abhandlungen des Geologischen Landesamtes Baden-Württemberg, 14, 173190.Google Scholar
Luz, A.J.E. (2003) Geologische Kartierung, geochemische und strukturgeologische Untersuchungen in der Grube Segen Gottes und ihrem Umfeld, Haslach–Schnellingen im Kinzigtal. Diploma Thesis, University of Freiburg, Germany.Google Scholar
Makovicky, E. (2006) Crystal structures of sulfides and other chalcogenides. Pp. 7125 in: Sulfide Mineralogy and Geochemistry (Vaughan, D.J., editor). Reviews in Mineralogy and Geochemistry, 61, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Marignac, C. and Cuney, M. (1999) Ore deposits of the French Massif Central: insight into metallogenesis of the Variscan collision belt. Mineralium Deposita, 34, 472504.CrossRefGoogle Scholar
Markl, G. (2005) Bergbau und Mineralienhandel im fürstenbergischen Kinzigtal. Markstein Verlag, Filderstadt, Germany.Google Scholar
Markl, G., von Blanckenburg, F. and Wagner, T. (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochimica et Cosmochimica Acta, 70, 30113030.CrossRefGoogle Scholar
Mehnert, K.R. (1949) Die Kupfer-Wismut-Lagerstätte ‘Daniel’ bei Wittichen (mittl. Schwarzwald). Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Band A, Mh., 217260.Google Scholar
Metz, R. (1971) Mineralogisch-landeskundliche Wanderungen im Nordschwarzwald. Aufschluss, Sh. 20.Google Scholar
Metz, R., Richter, M. and Schürenberg, H. (1957) Die Blei-Zink-Erzgänge des Schwarzwaldes. Geologisches Jahrbuch, Bh. 29, 277 pp.Google Scholar
Neumann, R. (2006) Strukturgeologische und geochemische Untersuchungen sowie geologische Kartierung der Grube Hell a- Glück (Neubulach, Nordschwarzwald) und ihrer Urngebung. Diploma Thesis, University of Freiburg, Germany.Google Scholar
O'Leary, M.J. and Sack, R.O. (1987) Fe-Zn exchange reaction between tetrahedrite and sphalerite in natural environments. Contributions to Mineralogy and Petrology, 96, 415425.CrossRefGoogle Scholar
Paar, W.H., Chen, T.T. and Günther, W (1978) Extrem silberreicher Freibergit in Pb-Zn-Cu-Erzen des Bergbaues “Knappenstube”, Hochtor, Salzburg. Carinthia II, 88, 3542.Google Scholar
Pfaff, K., Romer, R.L. and Markl, G. (2009 a) U-Pb ages of ferberite, chalcedony, agate, U-mica and pitchblende: constraints on the mineralization history of the Schwarzwald ore district. European Journal of Mineralogy, 21, 817836.CrossRefGoogle Scholar
Pfaff, K., Wagner, T. and Markl, G. (2009 b) Fluid mixing recorded by mineral assemblage and Mineral chemistry in a Mississippi Valley-Type Pb-Zn-Ag deposit in Wiesloch, SW Germany. Geochemical Exploration, 101, 81.CrossRefGoogle Scholar
Reed, S.J.B. (1996) Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, UK, 201 pp.Google Scholar
Rupf, I. and Nitsch, E. (2008) Das geologische Landesmodell von Baden-Württemberg: Datengrundlagen, technische Umsetzung und erste geologische Ergebnisse. Landesamt für Geologie, Rohstoffe und Bergbau Information, 21, 182.Google Scholar
Sack, R.O., Lynch, J.V.G. and Foit, F. Jr (2003) Fahlore as a petrogenetic indicator: Keno Hill Ag-Pb-Zn District, Yukon, Canada. Mineralogical Magazine, 67, 10231038.CrossRefGoogle Scholar
Sack, R.O., Fredericks, R., Hardy, L.S. and Ebel, D.S. (2005) Origin of high-Ag fahlores from the Galena Mine, Wallace, Idaho, U.S.A. American Mineralogist, 90, 10001007.CrossRefGoogle Scholar
Sandberger, F. (1882) Untersuchungen über Erzgänge I, Kreidel's Verlag, Wiesbaden, Germany.Google Scholar
Sandberger, F. (1885) Untersuchungen über Erzgänge II, Kreidel's Verlag, Wiesbaden, Germany.Google Scholar
Schifer, T. (1998) Lagerstättenkundliche Bearbeitung des mittelalterlichen Montanreviers am Birkenberg bei St. Ulrich—Bollschweil im Südschwarzwald. Diploma Thesis, University of Freiburg, Germany.Google Scholar
Schwinn, G. and Markl, G. (2005) REE systematics in hydrothermal fluorite. Chemical Geology, 216, 225248.CrossRefGoogle Scholar
Schwinn, G., Wagner, T., Baatartsogt, B. and Markl, G. (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochimica et Cosmochimica Ada, 70, 965982.CrossRefGoogle Scholar
Selb, C. (1805) Geognostische Beschreibung des Kinzigerthals, mit Hinsicht auf das Hauptgebirges des Schwarzwaldes. Denkschrift der vaterländischen Gesellschaft der Ärzte und Naturforscher Schwabens, 324435.Google Scholar
Staude, S., Wagner, T. and Markl, G. (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: Implications for the formation of Kongsberg-type silver deposits. The Canadian Mineralogist, 45, 11471176.CrossRefGoogle Scholar
Staude, S., Bons, P.D. and Markl, G. (2009) Hydrothermal vein formation by extension–driven dewatering of the middle crust: An example from SW Germany. Earth and Planetary Science Letters, 286, 387395.CrossRefGoogle Scholar
Staude, S., Dorn, A., Pfaff, K. and Markl, G. (in press) Ag-Bi sulfosalt assemblage and their conditions of formation: the type locality of schapbachite (Ag0.4Pb0.2Bi0.4S) and neighbouring mines in the Schwarzwald ore district, South Germany, revisited. The Canadian Mineralogist. Google Scholar
Todt, W. (1976) Zirkon-U/Pb-Alter des Malsburger Granits vom Süd-Schwarzwald. Neues Jahrbuch für Mineralogie Monatshefte, 12, 532544.Google Scholar
Wagner, T. and Cook, N.J. (2000) Late-Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibnite precipitation by drastic cooling of high-temperature fluid systems. Mineralium Deposita, 35, 206222.CrossRefGoogle Scholar
Wagner, T. and Jonsson, E. (2001) Mineralogy of sulfosalt-rich vein-type ores, Boliden massive sulphide deposit, Skellefte district, northern Sweden. The Canadian Mineralogist, 39, 855872.CrossRefGoogle Scholar
Wagner, T., Jonsson, E. and Boyce, A. (2005) Metamorphic ore remobilization in the Hällefors district, Bergslagen, Sweden: constraints from mineralogical and small-scale sulphur isotope studies. Mineralium Deposita, 40, 100114.CrossRefGoogle Scholar
Walenta, K. (1992) Die Mineralien des Schwarzwaldes. Weise Verlag, München, Germany.Google Scholar
Werner, W. and Dennert, V. (2004) Lagerstätten und Bergbau im Schwarzwald. Landesamt für Geologie, Rohstoffe und Bergbau, Freiburg, Germany.Google Scholar
Wetzel, A., Allenbach, R. and Allia, V. (2003) Reactivated basement structures affecting the sedi-mentary facies in a tectonic ‘quiescent’ epicontinental basin: an example from the NW Switzerland. Sedimentary Geology, 157, 153172.CrossRefGoogle Scholar
Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum, Maatschappij B.V., Den Haag.Google Scholar
Supplementary material: File

Staude et al. supplementary material

Supplementary data table

Download Staude et al. supplementary material(File)
File 117.8 KB