Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T14:18:55.823Z Has data issue: false hasContentIssue false

Columbite supergroup of minerals: nomenclature and classification

Published online by Cambridge University Press:  08 September 2022

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics RAS, Chernogolovka, 142432, Russia
Marco Pasero
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53; I-56126 Pisa, Italy
Sergey M. Aksenov
Affiliation:
Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209, Russia Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia Nanomaterials Research Center, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Li Yike
Affiliation:
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Thomas Witzke
Affiliation:
Malvern Panalytical, XRD Application Laboratory, Lelyweg 1, 7602 EA Almelo, The Netherlands
*
*Author for correspondence: Nikita V. Chukanov, Email: nikchukanov@yandex.ru

Abstract

The columbite supergroup is established. It includes five mineral groups (ixiolite, wolframite, samarskite, columbite and wodginite) and one ungrouped species (lithiotantite). The criteria for a mineral to belong to the columbite supergroup are: the general stoichiometry MO2; the crystal structure based on the hexagonal close packing (hcp) of anions (or close to it); the six-fold coordination number of M-type cations (augmented to eight-fold in the case of slight distortion of hcp); and the presence of zig-zag chains of edge-sharing M-centred polyhedra. The ixiolite-type structure is considered as an aristotype with the space group Pbcn, the smallest unit cell volume, and the basic vectors a0, b0 and c0. Based on the multiplying of the ixiolite-type unit cell the following derivatives are distinguished: ixiolite type [ixiolite-group minerals; a = a0, b = b0 and c = c0; space group Pbcn; the members are ixiolite-(Mn2+), ixiolite-(Fe2+), scrutinyite, seifertite and srilankite]; wolframite type [wolframite-group minerals, ordered analogues of the ixiolite type with a = a0, b = b0 and c = c0; P2/c; the members are ferberite, hübnerite, huanzalaite, sanmartinite, heftetjernite, nioboheftetjernite, rossovskyite and riesite]; samarskite type [samarskite-group minerals; a = 2a0, b = b0 and c = c0; P2/c; the members are samarskite-(Y), ekebergite and shakhdaraite-(Y)]; columbite type [columbite-group minerals; a = 3a0, b = b0 and c = c0; Pbcn; the members are columbite-(Fe), columbite-(Mn), columbite-(Mg), tantalite-(Fe), tantalite-(Mn), tantalite-(Mg), fersmite, euxenite-(Y), tanteuxenite-(Y) and uranopolycrase]; and wodginite type [wodginite-group minerals; a = 2a0, b = 2b0 and c = c0; C2/c; the members are wodginite, ferrowodginite, titanowodginite, ferrotitanowodginite, tantalowodginite, lithiowodginite and achalaite]. Samarskite-(Yb), ishikawaite and calciosamarskite are insufficiently studied, tentatively considered as possible members of the samarskite supergroup. Qitianlingite, yttrocolumbite-(Y), yttrotantalite-(Y) and yttrocrasite-(Y) are questionable and need further studies. Polycrase-(Y) is discredited as identical to euxenite-(Y). Ixiolite has been renamed as ixiolite-(Mn2+), with the end-member formula (Ta2/3Mn2+1/3)O2. Ta- and Nb-dominant analogues of ixiolite with different schemes of charge balancing have the end-member formulae (M15+0.5M23+0.5)O2, M15+2/3M22+1/3)O2, M15+0.75M2+0.25)O2 or M15+0.80.2)O2 and the root name ‘ixiolite’ (for M1 = Ta) or ‘nioboixiolite’ (for M1 = Nb).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R. Kampf

References

Aksenov, S.M., Ryanskaya, A.D., Shchapova Yu, V., Chukanov, N.V., Vladykin, N.V., Votyakov, S.L. and Rastsvetaeva, R.K. (2021a) Crystal chemistry of lamprophyllite-group minerals from the Murun alkaline complex (Russia) and pegmatites of Rocky Boy and Gordon Butte (USA): Single crystal X-ray diffraction and Raman spectroscopy study. Acta Crystallographica, B77, 287298.Google Scholar
Aksenov, S.M., Yamnova, N.A., Kabanova, N.A., Volkov, A.S., Gurbanova, O.A., Deyneko, D.V., Dimitrova, O.V. and Krivovichev, S.V. (2021b) Topological features of the alluaudite-type framework and its derivatives: synthesis and crystal structure of NaMnNi2(H2/3PO4)3. Crystals, 11, 237.CrossRefGoogle Scholar
Aksenov, S.M., Antonov, A.A., Deyneko, D.V., Krivovichev, S.V. and Merlino, S. (2022a) Polymorphism, polytypism, and modular aspect of compounds with the general formula A 2M 3(TO4)4 (A = Na, Rb, Cs, Ca; M = Mg, Mn, Fe3+, Cu2+; T = S6+, P5+): OD (order-disorder), topological description, and DFT-calculations. Acta Crystallographica, B78, 6169.Google Scholar
Aksenov, S.M., Kabanova, N.A., Chukanov, N.V., Panikorovskii, T.L., Blatov, V.A. and Krivovichev, S.V. (2022b) The role of local heteropolyhedral substitutions in the stoichiometry, topological characteristics, and ion-migration paths in the eudialyte-related structures: A quantitative analysis. Acta Crystallographica, B78, 8090.Google Scholar
Aleksandrov, V.B. (1960) The crystal structure of fersmite. Doklady Akademii Nauk SSSR, 132, 669673 [in Russian].Google Scholar
Angelelli, V. and Gordon, S.G. (1948) Sanmartinite, a new zinc tungstate from Argentina. Notulae Naturae of the Academy of Natural Sciences of Philadelphia, 205, 17.Google Scholar
Armbruster, T. (2002) Revised nomenclature of högbomite, nigerite, and taaffeite minerals. European Journal of Mineralogy, 14, 389–295.CrossRefGoogle Scholar
Aurisicchio, C., Orlandi, P., Pasero, M. and Perchiazzi, N. (1993) Uranopolycrase, the uranium-dominant analogue of polycrase-(Y), a new mineral from Elba Island, Italy, and its crystal structure. European Journal of Mineralogy, 5, 11611165.CrossRefGoogle Scholar
Balassone, G., Danisi, R. Micaela, Armbruster, T., Altomare, A., Moliterni, A. Grazia, , Petti, C., Mondillo, N., Ghiara, M.R. and Saviano, M. (2015) An insight into crystal chemistry and cation order of columbite-(Fe) and columbite-(Mn) from worldwide occurrences. Neues Jahrbuch für Mineralogie – Abhandlungen, 192, 275287.CrossRefGoogle Scholar
Bergerhoff, G., Berndt, M., Brandenburg, K. and Degen, T. (1999) Concerning inorganic crystal structure types. Acta Crystallographica, B55, 147156.CrossRefGoogle Scholar
Biagioni, C., George, L.L., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Welch, M.D. and Bosi, F. (2020) The tetrahedrite group: nomenclature and classification. American Mineralogist, 105, 109122, doi: https://doi.org/10.2138/am-2020-7128CrossRefGoogle Scholar
Blatov, V.A. (2009) Methods for topological analysis of atomic nets. Journal of Structural Chemistry, 50, 160167.CrossRefGoogle Scholar
Blatov, V.A., O'Keeffe, M. and Proserpio, D.M. (2010) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm, 12, 4448.CrossRefGoogle Scholar
Blatov, V.A., Shevchenko, A.P. and Proserpio, D.M. (2014) Applied topological analysis of crystal structures with the program package ToposPro. Crystal Growth and Design, 14, 35763586.CrossRefGoogle Scholar
Bohnstedt-Kupletskaya, E.M. and Burova, T.A. (1946) Fersmite, a new calcium niobate from the pegmatites of the Vishnevy Mountains, Central Urals. Doklady Academii Nauk SSSR, 52, 6971 [in Russian].Google Scholar
Borneman-Starynkevitch, I.D., Rudnitskaya, E.S., Loseva, T.I. and Amelina, V.S. (1974) Once again, wolframoixiolite. Sbornik Nauchnykh Trudov Moskovskogo Otdeleniya Vsesoyuznogo Mineralogicheskogo Obshchestva, 1974, 2528 [in Russian].Google Scholar
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S. (2019) On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.CrossRefGoogle Scholar
Britvin, S.N., Pekov, I.V., Krzhizhanovskaya, M.G., Agakhanov, A.A., Ternes, B., Schüller, W. and Chukanov, N.V. (2019) Redefnition and crystal chemistry of samarskite-(Y), YFe3+Nb2O8: cation-ordered niobate structurally related to layered double tungstates. Physics and Chemistry of Minerals, 46, 727741.CrossRefGoogle Scholar
Burke, E.A.J. (2008) Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks. Mineralogical Record, 39, 131135.Google Scholar
Capillas, C., Perez-Mato, J.M. and Aroyo, M.I. (2007) Maximal symmetry transition paths for reconstructive phase transitions. Journal of Physics. Condensed Materials, 19, 275203.CrossRefGoogle Scholar
Capitani, G.C., Mugnaioli, E. and Guastoni, A. (2016) What is the actual structure of samarskite-(Y)? A TEM investigation of metamict samarskite from the Garnet Codera dike pegmatite (Central Italian Alps). American Mineralogist, 101, 16791690.CrossRefGoogle Scholar
Chen, M., Gu, X.P., Xie, X.D. and Yin, F. (2013) High-pressure polymorph of TiO2-II from the Xiuyan crater of China. Chinese Science Bulletin, 58, 46554662.CrossRefGoogle Scholar
Chukhrov, F.V. and Bonshtedt-Kupletskaya, E.V. (editors) (1967) Minerals, vol. II(3). Nauka, Moscow, 676 pp.Google Scholar
Cid-Dresdner, H. and Escobar, C. (1968) The crystal structure of ferberite, FeWO4. Zeitschrift für Kristallographie, 127, 6172.CrossRefGoogle Scholar
Credner, H. (1865) Hübnerit, ein neues mineral. Berg- und Huttenmannische Zeitung, 24, 370371.Google Scholar
Cummings, J.P. and Simonsen, S.H. (1970) The crystal structure of calcium niobate (CaNb2O6). American Mineralogist, 55, 9097.Google Scholar
Dachs, H., Stoll, E. and Weitzel, H. (1967) Kristallstruktur und magnetische ordnung des hübnerits, MnWO4. Zeitschrift für Kristallographie, 125, 120129.CrossRefGoogle Scholar
Dana, E.S. (1892) Columbite group. Pp. 731738 in: The System of Mineralogy of James Dwight Dana 1837–1868. Descriptive Mineralogy. 6th edition, John Wiley & Sons, New York.Google Scholar
De la Flor, G., Orobengoa, D., Tasci, E., Perez-Mato, J.M. and Aroyo, M.I. (2016) Comparison of structures applying the tools available at the Bilbao Crystallographic Server. Journal of Applied. Crystallography, 49, 653664.CrossRefGoogle Scholar
Dera, P., Prewitt, C.T., Boctor, N.Z. and Hemley, R.J. (2002) Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. American Mineralogist, 87, 10181023.CrossRefGoogle Scholar
Ekeberg, A.G. (1802) Uplysning 'om Ytterjordens egenskaper, i synnerhet i jamforelse med Berylljorden: om de Fossilier, hvari forstnamnde jord innehålles, samt om en ny uptäckt kropp of metallisk natur. Kongliga Svenska Vetenskaps–Akademiens Handlingar, 23, 6883.Google Scholar
El Goresy, A., Chen, M., Gillet, P., Dubrovinsky, L., Graup, G. and Ahuja, R. (2001) A natural shock-induced dense polymorph of rutile with alpha-PbO2 structure in the suevite from the Ries crater in Germany. Earth and Planetary Science Letters, 192, 485495.CrossRefGoogle Scholar
El Goresy, A., Dera, P., Sharp, T.G. and Hemley, R.J. (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy, 20, 523528.CrossRefGoogle Scholar
Ellsworth, H.V. (1927) Lyndochite – a new mineral of the euxenite-polycrase group from Lyndoch Township, Renfrew County, Ontario. American Mineralogist, 12, 112118.Google Scholar
Ellsworth, H.V. (1928a) A mineral related to samarskite from the Woodcox mine, Hybla, Ontario. American Mineralogist, 13, 6365.Google Scholar
Ellsworth, H.V. (1928b) A mineral related to samarskite from Parry Sound, Ontario. American Mineralogist, 13, 6668.Google Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1992a) The wodginite group. I. Structural crystallography. The Canadian Mineralogist, 30, 597611.Google Scholar
Ercit, T.S., Černý, P., Hawthorne, F.C. and McCammon, C.A. (1992b) The wodginite group. II. Crystal chemistry. The Canadian Mineralogist, 30, 613631.Google Scholar
Ercit, T.S., Černý, P. and Hawthorne, F.C. (1992c) The wodginite group. III. Classification and new species. The Canadian Mineralogist, 30, 633638.Google Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1992d) The crystal structure of alumotantite: its relation to the structures of simpsonite and (Al,Ga)(Ta,Nb)O4 compounds. The Canadian Mineralogist, 30, 653662.Google Scholar
Ercit, T.S., Wise, M.A. and Černý, P. (1995) Compositional and structural systematic of the columbite group. American Mineralogist, 80, 10191028.CrossRefGoogle Scholar
Ferguson, R.B., Hawthorne, F.C. and Grice, J.D. (1976) The Crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. II. Wodginite. The Canadian Mineralogist, 14, 550560.Google Scholar
Galliski, M.A., Černý, P., Márquez-Zavalía, M.F. and Chapman, R. (1999) Ferrotitanowodginite, Fe2+TiTa2O8, a new mineral of the wodginite group from the San Elías pegmatite, San Luis, Argentina. American Mineralogist, 84, 773777.CrossRefGoogle Scholar
Galliski, M.A., Márquez-Zavalía, M.F., Černý, P., Lira, R., Colombo, F., Roberts, A.C. and Bernhardt, H.-J. (2016) Achalaite, Fe2+TiNb2O8, a new member of the wodginite group from the La Calandria granitic pegmatite, Córdoba, Argentina. The Canadian Mineralogist, 54, 10431052.CrossRefGoogle Scholar
Ginzburg, A.L., Gorzhevskaya, S.A., Sidorenko, G.A. and Ukhina, T.A. (1969) Wolframoixiolite – a variety of ixiolite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchtstva, 98, 6373 [in Russian].Google Scholar
Graham, J. and Thornber, M.R. (1974a) The crystal chemistry of complex niobium and tantalum oxides. I. Structural classification of MO2 phases. American Mineralogist, 59, 10261039Google Scholar
Graham, J. and Thornber, M.R. (1974b) The crystal chemistry of complex niobium and tantalum oxides. II. Composition and structure of wodginite. American Mineralogist, 59, 10401044.Google Scholar
Grice, J.D., Ferguson, R.B and Hawthorne, F.C. (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. I. Tantalite and ixiolite. The Canadian Mineralogist, 14, 540549.Google Scholar
Guastoni, A., Secco, L., Škoda, R., Nestola, F., Schiazza, M., Novák, M. and Pennacchioni, G. (2019) Non-metamict aeschynite-(Y), polycrase-(Y), and samarskite-(Y) in NYF pegmatites from Arvogno, Vigezzo Valley (Central Alps, Italy). Minerals, 9, 313.CrossRefGoogle Scholar
Gurbanova, O.A., Rastsvetaeva, R.K., Kashaev, A.A. and Smolin, A.S. (2001) Refined crystal structure of TR-fersmite (TR = Ce). Crystallography Reports, 46, 194195CrossRefGoogle Scholar
Hanson, S.L., Simmons, W.B., Falster, A.U., Foord, E.E. and Lichte, F.E. (1999) Proposed nomenclature for samarskite-group minerals: new data on ishikawaite and calciosamarskite. Mineralogical Magazine, 63, 2736.CrossRefGoogle Scholar
Hanson, S.L., Falster, A.U., Simmons, W.B., Sprague, R., Vignola, P., Rotiroti, N., Andó, S. and Hatert, F. (2018) Tantalowodginite, (Mn0.50.5)TaTa2O8, a new mineral species from the Emmons pegmatite, Uncle Tom Mountain, Maine, U.S.A. The Canadian Mineralogist, 56, 543553.CrossRefGoogle Scholar
Harrison, W.T.A. and Cheetham, A.K. (1989) Structural and magnetic properties of FeNbO4-II. Materials Research Bulletin, 24, 523527.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Henckel, J.F. (1725) Pyritologia: oder Kieß-Historie, als des vornehmsten Minerals nach dessn Nahmen, Arten, Lagerstätten, Ursprung. Martini, Leipzig, Germany, 1008 pp.Google Scholar
Hidden, W.E. and Warren, C.H. (1906) On yttrocrasite, a new yttrium-thorium-uranium titanate. American Journal of Science, 172, 515519.CrossRefGoogle Scholar
Jameson, R. (1805) System of Mineralogy. vol. II. Bell and Bradfute, Edinburgh, 625 pp.Google Scholar
Johnsen, O., Stahl, K., Petersen, O.V. and Micheelsen, H.I. (1999) Structure refinement of natural non-metamict polycrase-(Y) from Zomba-Malosa complex, Malawi. Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 110.Google Scholar
Keller, C. (1962) Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Zeitschrift für Anorganische und Allgemeine Chemie, 318, 89106.CrossRefGoogle Scholar
Kjellman, J., Pay Gómez, C., Lazor, P., Majka, J., Stanley, C. and Najorka, J. (2018) Ekebergite, IMA 2018-088. CNMNC Newsletter No. 46, December 2018, p. 1184. European Journal of Mineralogy, 30, 11811189.Google Scholar
Kolitsch, U., Kristiansen, R., Raade, G. and Tillmanns, E. (2010) Heftetjernite, a new scandium mineral from the Heftetjern pegmatite, Tørdal, Norway. European Journal of Mineralogy, 22, 309316.CrossRefGoogle Scholar
Konovalenko, S.I., Ananyev, S.A., Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Baeva, A.A., Gainov, R.R., Vagizov, F.G., Lopatin, O.N. and Nebera, T.S. (2015) A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties. Physics and Chemistry of Minerals, 42, 825833.CrossRefGoogle Scholar
Lepierre, C. (1937) Yttrocolumbite de Mocambique. Memoirs de la Academie de Ciencias, Lisboa, class Ciencias, 1, 369375 [in Portuguese].Google Scholar
Levinson, A.A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152158.Google Scholar
Liebe, K.L.T. (1863) Ein neuer Wolframit. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 1863, 641653.Google Scholar
Lima-de-Faria, J. (2012) The close packing in the classification of minerals. European Journal of Mineralogy, 24, 163169.CrossRefGoogle Scholar
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. and Parthé, E. (1990) Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types. Acta Crystallographica, A46, 111.Google Scholar
Lykova, I., Rowe, R., Poirier, G., McDonald, A.M. and Giester, G. (2021) Nioboheftetjernite, ScNbO4, a new mineral from the Befanamo pegmatite, Madagascar. The Canadian Mineralogist, 59, 445452.CrossRefGoogle Scholar
Macavei, J. and Schulz, H. (1993) The crystal structure of wolframite type tungstates at high pressure. Zeitschrift für Kristallographie, 207, 193208.CrossRefGoogle Scholar
Mathias, V.V., Rossovskii, L.N., Shostatskii, A.N. and Kumskova, N.M. (1963) Magnocolumbite, a new mineral. Doklady Akademii Nauk SSSR, 148, 420423 [in Russian].Google Scholar
Mitchell, R.H., Welch, M.D. and Chakhmouradian, A.R. (2017) Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineralogical Magazine, 81, 411461.CrossRefGoogle Scholar
Miyawaki, R., Yokoyama, K., Matsubara, S., Furuta, H., Gomi, A. and Murakami, R. (2010) Huanzalaite, MgWO4, a new mineral species from the Huanzala mine, Peru. The Canadian Mineralogist, 48, 105112.CrossRefGoogle Scholar
Müller, U. (2004) Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Zeitschrift für anorganische und allgemeine Chemie, 630, 15191537 [in German].CrossRefGoogle Scholar
Nakajima, T. and Kurosawa, M. (2006) Rare-element mineralogy of the Uzumine granitic pegmatite, Abukuma Mountains, Northeastern Japan. The Canadian Mineralogist, 44, 3144.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature. The Canadian Mineralogist, 25, 353377CrossRefGoogle Scholar
Nickel, E.H., Rowland, J.F. and McAdam, R.C. (1963a) Ixiolite – a columbite substructure. American Mineralogist, 48, 961979.Google Scholar
Nickel, E.H., Rowland, J.F. and McAdam, R.C. (1963b) Wodginite – a new tin-manganese tantalate from Wodgina, Australia and Bernic Lake, Manitoba. The Canadian Mineralogist, 7, 390402.Google Scholar
Nordenskiöld, A.E. (1857) Beitrag zu Finnlands Mineralogie. Annalen der Physik und Chemie, 11, 625642.CrossRefGoogle Scholar
Nordenskiöld, A.E. (1877) Mineralogiska meddelanden. 3. Tantalsyrade mineralier från Utö. Geologiska Föreningens i Stockholm Förhandlingar, 3, 282286.CrossRefGoogle Scholar
Orobengoa, D., Capillas, C., Aroyo, M.I. and Perez-Mato, J.M. (2009) AMPLIMODES : symmetry-mode analysis on the Bilbao Crystallographic Server. Journal of Applied Crystallography, 42, 820833.CrossRefGoogle Scholar
Pagola, S., Carbonio, R.E., Alonso, J.A. and Fernandez-Diaz, M.T. (1997) Crystal structure refinement of MgNb2O6 columbite from neutron powder diffraction data and study of the ternary system MgO–Nb2O5–NbO, with evidence of formation of new reduced pseudobrookite Mg5–xNb4+xO15–δ (1.14 ≤ x ≤ 1.60) phases. Journal of Solid State Chemistry, 134, 7684.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1944) Dana's System of Mineralogy, 7th Edition, Vol. I. John Wiley & Sons, New York, 834 pp.Google Scholar
Pautov, L.A., Mirakov, M.A., Sokolova, E., Day, M.C., Hawthorne, F.C., Schodibekov, M.A., Karpenko, V.Y., Makhmadsharif, S. and Faiziev, A.R. (2022) Shakhdaraite-(Y), ScYNb2O8, from the Leskhozovskaya granitic pegmatite, The Valley of the Shakhdara River, South-Western Pamir, Gorno-Badakhshanskii Autonomous Region, Tajikistan: New mineral description and crystal structure. The Canadian Mineralogist, 60, 369382.CrossRefGoogle Scholar
Pekov, I.V., Yakubovich, O.V., Shcherbachev, D.K. and Kononkova, N.N. (2003) Magnesiotantalite (Mg,Fe)(Ta,Nb)2O6, the new columbite–tantalite group mineral from desilicated granite pegmatites of Lipovka (the Central Urals) and its genesis. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 132, 4960.Google Scholar
Peng, Z., Wang, S., Ma, Z. and Yang, G. (1988) The crystal structure of qitianlingite (Fe2Nb2WO10). Kexue Tongbao, 33, 856861.Google Scholar
Redfern, S.A.T., Bell, A.M.T., Henderson, M.B. and Schofield, P.F. (1995) Rietveld study of the structural phase transition in the sanmartinite (ZnWO4) – cuproscheelite (CuWO4) solid solution. European Journal of Mineralogy, 7, 10191028.CrossRefGoogle Scholar
Rose, H. (1847) Ueber die Zusammensetzung des Uranotantals und des Columbits vom Ilmengebirge in Sibirien. Annalen der Physik und Chemie, 71, 157169 [in German].CrossRefGoogle Scholar
Rose, H. (1858) Ueber die Zusammensetzung der in der Natur vorkommenden Tantalsäure haitigen Mineralien. Journal für praktische Chemie, 74, 6366 [in German].CrossRefGoogle Scholar
Scheerer, T. (1840) Ueber den Euxenit, eine neue Mineralspecies. Annalen der Physik und Chemie, 50, 149153.CrossRefGoogle Scholar
Scheerer, T. (1844) Polykras und Malakon, zwei neue Mineralspecies. Annalen der Physik und Chemie, 62, 429443.CrossRefGoogle Scholar
Shen, G. (1998) Discreditation of ashanite. Acta Mineralogica Sinica, 18, 230233 [in Chinese].Google Scholar
Shevchenko, A.P. and Blatov, V.A. (2021) Simplify to understand: how to elucidate crystal structures? Structural Chemistry, 32, 507519.CrossRefGoogle Scholar
Shimata, Y. and Kimura, K. (1922a) Chemical investigation of Japanese minerals containing rare elements. IV. Samarskite and an unnamed mineral from Ishikawa, Iwaki Province. Journal of the Chemical Society of Japan, 43, 301312.Google Scholar
Shimata, Y. and Kimura, K. (1922b) Ishikawaite, a new mineral from Ishikawa, Iwaki province. Journal of the Chemical Society of Japan, 43, 648649.Google Scholar
Simmons, W.B., Hanson, S.H. and Falster, A.U. (2006) Samarskite-(Yb) a new species of the samarskite group from the Little Patsy pegmatite, Jefferson County, Colorado. The Canadian Mineralogist, 44, 11191125.CrossRefGoogle Scholar
Simpson, E.S. (1928) Tanteuxenite (Sp.nov.), Pilbara Goldfield, N.W. Div. Journal of the Royal Society of Western Australia, 14, 4548.Google Scholar
Sokolova, E.P. (1959) Some new data on euxenite investigation Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 88, 408418 [in Russian].Google Scholar
Sugitani, Y., Suzuki, Y. and Nagashima, K. (1985) Polymorphism of samarskite and its relationship to other structurally related Nb-Ta oxides with the α-PbO2 structure. American Mineralogist, 70, 856866.Google Scholar
Sulyanova, E.A. and Sobolev, B.P. (2022) The universal defect cluster architecture of fluorite-type nanostructured crystals. CrystEngComm, 24, 37623769.CrossRefGoogle Scholar
Taggart, J.E. Jr., Foord, E.E., Rosenzweig, A. and Hanson, T. (1988) Scrutinyite, natural occurrences of PbO2 from Bingham, New Mexico, U.S.A., and Mapimi, Mexico. The Canadian Mineralogist, 26, 905910.Google Scholar
Tarantino, S.C. and Zema, M. (2005) Mixing and ordering behavior in manganocolumbite–ferrocolumbite solid solution: a single-crystal X-ray diffraction study. American Mineralogist, 90, 12911299.CrossRefGoogle Scholar
Thomson, T. (1836) On the minerals containing columbium. Records of General Science, 4, 407419.Google Scholar
Tomašić, N., Galović, A., Bermanec, V. and Rajić, M. (2004) Recrystallization of metamict Nb-Ta-REE complex oxides: A coupled X-ray-diffraction and Raman spectroscopy study of aeschynite-(Y) and polycrase-(Y). The Canadian Mineralogist, 42, 18471857.CrossRefGoogle Scholar
Troitzsch, U., Christy, A.G. and Ellis, D.J. (2005) The crystal structure of disordered (Zr,Ti)O2 solid solution including srilankite: evolution towards tetragonal ZrO2 with increasing Zr. Physics and Chemistry of Minerals, 32, 504514.CrossRefGoogle Scholar
Tschauner, O., Ma, C., Lanzirotti, A. and Newville, M.G. (2020) Riesite, a new high pressure polymorph of TiO2 from the Ries impact structure. Minerals, 10, 78.CrossRefGoogle Scholar
Voloshin, A.V. (1993) Tantalo-Niobates: Systematic, Crystal Chemistry and Evolution of Forming of Minerals in Granitic Pegmatites. Nauka, Saint-Petersburg, Russia, 297 pp. [in Russian].Google Scholar
Voloshin, A.V., Pakhomovskii, Y.A. and Bakhchisaraytsev, A.Y. (1990) Lithiowodginite – a new mineral of the wodginite group from the granitic pegmatites of eastern Kazakhstan. Mineralogicheskiy Zhurnal, 12, 94100 [in Russian].Google Scholar
von Knorring, O.V. and Sahama, T.G. (1969) Scandian ixiolite from Mozambique and Madagascar. Bulletin of Geological Society of Finland, 41, 7577.CrossRefGoogle Scholar
Wang, S., Ma, Z. and Peng, Z. (1988) The crystal structure of wolframoixiolite. Kexue Tongbao, 33, 13631366.Google Scholar
Weitzel, H. and Schröcke, H. (1980) Kristallstrukturverfeinerungen von Euxenit, Y(Nb0.5Ti0.5)2O6, und M-Fergusonit, YNbO4. Zeitschrift für Kristallografie, 152, 6982.CrossRefGoogle Scholar
Willgallis, A. and Hartl, H. (1983) (Zr0.33Ti0.67)O2 – ein natürliches Zirconium-Titanoxid mit α-PbO2-Struktur. Zeitschrift für Kristallographie, 164, 5966.CrossRefGoogle Scholar
Willgallis, A., Siegmann, E. and Hettiaratchi, T. (1983) Srilankite, a new Zr-Ti-oxide mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 1983, 151157.Google Scholar
Wise, M.A., Černý, P. and Falster, A.U. (1998) Scandium substitution in columbite-group minerals and ixiolite. The Canadian Mineralogist, 36, 673680.Google Scholar
Wolten, G.M. (1967) The structure of the M’-phase of YTaO4, a third fergusonite polymorph. Acta Crystallographica, 23, 939944.CrossRefGoogle Scholar
Yang, G., Wang, S., Peng, Z. and Bu, J. (1985) Qitianlingite – A newly discovered superstructure complex oxide. Acta Mineralogica Sinica, 5, 193198 [in Chinese].Google Scholar
Zaslavskij, A.I. and Tolkachev, S.S. (1952) The structure of α–modification of lead dioxide. Zhurnal Fizicheskoi Khimii, 26, 743752 [in Russian].Google Scholar
Zhan, R., Tian, H., Peng, Z., Ma, Z., Han, F. and Jing, Z. (1980) A new mineral – ashanite, (Nb,Ta,U,Fe,Mn)4O8. Kexue Tongbao, 25, 510514 [in Chinese].Google Scholar
Zhang, R.Y., Liou, J.G. and Ernst, W.G. (2009) The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research, 16, 126.CrossRefGoogle Scholar
Zhang, L., Popov, D., Meng, Y., Wang, J., Ji, C., Li, B. and Mao, H.-K. (2016) In-situ crystal structure determination of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth's core–mantle boundary. American Mineralogist, 101, 231234.CrossRefGoogle Scholar
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Ternes, B., Schüller, W. and Pushcharovsky, D.Y. (2020) Tantalum-free Nb-dominant analogue of ixiolite from the Eifel paleovolcanic region, Germany, and its crystal structure: On the problem of “ashanite”. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 149, 125134 [in Russian].Google Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material

Download Chukanov et al. supplementary material(File)
File 790 KB