Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:43:57.907Z Has data issue: false hasContentIssue false

Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy

Published online by Cambridge University Press:  05 July 2018

A. Gianfagna*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma ‘La Sapienza’, P. le A. Moro 5, I-00185 Roma, Italy
P. Ballirano
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma ‘La Sapienza’, P. le A. Moro 5, I-00185 Roma, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma ‘La Sapienza’, P. le A. Moro 5, I-00185 Roma, Italy
B. Bruni
Affiliation:
Laboratorio di Ultrastrutture, Istituto Superiore di Sanità, Viale R. Elena 299, I-00162 Roma, Italy
L. Paoletti
Affiliation:
Laboratorio di Ultrastrutture, Istituto Superiore di Sanità, Viale R. Elena 299, I-00162 Roma, Italy
R. Oberti
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sezione di Pavia, Via Ferrata 1, I-27100 Pavia, Italy

Abstract

An epidemiological and environmental study of the area around Biancavilla (CT, Italy) was prompted by a significant incidence of malignant pleural mesothelioma, which was not related to a specific occupational activity. An environmental dispersion of fibres was found and attributed to local quarry activities, whose extracted volcanic products also contained fibrous amphiboles and had been used extensively in the local building industry, especially in the period 1960–1970.

Abundant yellowish and grey-whitish asbestiform amphiboles with strongly asymmetric morphology were identified in this study, intimately associated with albitic feldspar, hematite and very minor orthopyroxene. These minerals fill the pores of the altered volcanic host rock (metasomatized benmoreitic lavas and pyroclastic rocks). The Rietveld method allowed a quantitative mineralogical analysis of the mineral mixture (24% amphiboles-asbestos, 73% feldspar and 3% hematite).

The crystal size and morphology of the grey-whitish amphibole fibres do not allow quantitative microprobe analyses; semi-quantitative EDS-SEM analyses of a prismatic mineral known to be fluoroedenite and the unknown fibrous crystals studied here suggest that they are the same mineral, although the fibres are generally depleted in Ca and Mg. The F content is the same in both occurrences. Unitcell parameters of the fibres are: a = 9.815(1), b = 17.992(3), c = 5.2733(6) Å , β = 104.547(9)º, V = 901.4(3)Å3, and the refractive indices are in the range 1.60 –1.63. Optical, chemical and Rietveld analyses of the fibres confirm their similarity with the yellow prismatic fluoro-edenite previously analysed.

Biancavilla is the first occurrence of amphibole fibres in a volcanic context (the Etnean volcanic complex). These fibres have a very anomalous composition (high ANa, IVAl and O3F contents) in comparison to other known oncogenic minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baris, Y.I., Artvinli, M., Sahin, A.A., Bilir, N., Kalyoncu, F. and Sebastien, P. (1988) Non-occupational asbestos related chest disease in a small Anatolian village. British Journal of Industrial Medicine, 45, 841842.Google Scholar
Baris, Y.I., Demir, A.U., Shehu, V. et al. (1996) Environmental fibrous zeolite (erionite) exposure and malignant tumors other than mesothelioma. Journal of Environmental Pathology, Toxicology, and Oncology, 15, 183189.Google ScholarPubMed
Comba, P., Gianfagna, A. and Paoletti, L. (2003) The pleural mesothelioma cases in Biancavilla are related to the new fibrous amphibole fluoro-edenite. Archives of Environmental Health, 58, 229232.CrossRefGoogle Scholar
Di Paola, M., Mastrantonio, M., Carboni, M., Belli, S., Grignoli, M., Comba, P. and Nesti, M. (1996) La mortalita per tumore maligno della pleura in Italia negli anni 1988-1992. Rapporti ISTISAN, 40, 30.pp.Google Scholar
Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial divergence. Journal of Applied Crystallography, 27, 892900.CrossRefGoogle Scholar
Gianfagna, A. and Oberti, R. (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): crystal chemistry of a new amphibole end-member. American Mineralogist, 86, 14891493.CrossRefGoogle Scholar
Gianfagna, A., Paoletti, L. and Ventura, P. (1997) Segnalazione di fibre di amianto anfibolico nei prodotti lavici metasomatizzati di Monte Calvario (Biancavilla, Sicilia Orientale). PLINIUS (Suppl. EJM), 18, 117119.Google Scholar
Gibbons, W. (2000) Amphibole asbestos in Africa and Australia: geology, health hazard and mining legacy. Journal of the Geological Society of London, 157, 851858.CrossRefGoogle Scholar
Langer, A.M., Nolan, R.P., Costantopoulos, S.H. and Moutsopoulos, H.M. (1987) Association of Metsovo lung and pleural mesothelioma with exposure to tremolite-containing whitewash. Lancet, 25, 965967.CrossRefGoogle Scholar
Larson, A.C. and von Dreele, R.B. (1985) GSAS General Structure Analysis System. LAUR 86-748, Los Alamos National Laboratory. The Regents of the University of California, USA.Google Scholar
R.L., Lilis (1981) Fibrous zeolite and endemic mesothelioma in Cappadocia, Turkey. JOM, 23, 548550.Google Scholar
Mastrantonio, M., Belli, S., Binazzi, A., Carboni, M., Comba, P., Fusco, P., Grignoli, M., Iavarone, I., Martuzzi, M., Nesti, M., Trinca, S. and Uccelli, R. (2002) La mortalita per tumore maligno della pleura nei comuni italiani, 1988-1997. Rapporti ISTISAN, 02/12, 27 pp.Google Scholar
McDonald, J.C., Sebastien, P., McDonald, A.D. and Case, B. (1989) Epidemiological observations on mesothelioma and their implication for non-occupa¬tional exposure. In: Non occupational exposure to mineral fibres. IARC Scientific Publication, 90, 420427.Google Scholar
Paoletti, L., Batisti, D., Bruno, C., Di Paola, M., Gianfagna, A., Mastrantonio, M., Nesti, M. and Comba, P. (2000) Unusually high incidence of malignant pleural mesothelioma in a town of eastern Sicily: an epidemiological and environmental study. Archives of Environmental Health, 55, 392398.CrossRefGoogle Scholar
Peto, J., Decarli, A., La Vecchia, C., Levi, F. and Negri, E. (2002) The European mesothelioma epidemic. British Journal of Cancer, 86, 19701971.Google Scholar
Romano, R. (1982) Succession of the volcanic activity in the Etnean area. Memorie della Societd Geologica Italiana, 23, 2748.Google Scholar
Temel, A. and Gundogdu, M.N. (1996) Zeolite occurrences and the erionite-mesothelioma relation¬ship in Cappadocia, Central Anatolia, Turkey. Mineralium Deposita, 31, 539547.CrossRefGoogle Scholar
von Dreele, R.B. (1997) Quantitative texture analysis by Rietveld refinement. Journal of Applied Crystallography, 30, 517525.CrossRefGoogle Scholar
Wagner, T.C., Sleggs, C.A. and Marckand, P. (1960) Diffuse pleural mesothelioma and asbestos exposure in north western Cape Province. British Journal of Industrial Medicine, 17, 160171.Google ScholarPubMed
Wilye, A. and Verkouteren, J. (2000) Amphibole asbestos from Libby, Montana: aspects of nomen¬clature. American Mineralogist, 85, 15401542.Google Scholar