Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:09:11.521Z Has data issue: false hasContentIssue false

Belousovite, KZn(SO4)Cl, a new sulfate mineral from the Tolbachik volcano with apophyllite sheet-topology.

Published online by Cambridge University Press:  15 May 2018

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200, Russia
Evgeny V. Nazarchuk
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia
Evgeniya A. Lukina
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia
Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia
Vladimir V. Shilovskikh
Affiliation:
Geomodel Centre, St. Petersburg State University, University emb. 7/9, St. Petersburg 198504, Russia
*

Abstract

Belousovite, ideally KZn(SO4)Cl, was found in a Yadovitaya fumarole of the Second scoria cone of the North Breach of the Great Tolbachik Fissure Eruption (1975–1976), Tolbachik volcano, Kamchatka Peninsula, Russia. Belousovite occurs as irregularly-shaped grains and in the form of microcrystalline masses associated with kamchatkite, langbeinite, euchlorine, anglesite and zincite. Belousovite is monoclinic, P21/c, a = 6.8904(5), b = 9.6115(7), c = 8.2144(6) Å, β = 96.582(2), V = 540.43(7) Å3 and Z = 4 (from single-crystal diffraction data). The eight strongest lines of the powder X-ray diffraction pattern are [dmeas Å(I)(hkl)]: 6.8451(100)(100), (3.6401)(71)($\bar{1}$21), (3.1592)(84)(1$\bar{1}$2), (3.1218)(41)($\bar{2}$11), (3.1140)(52)(022), (2.9812)(41)(031), (2.9121)(44)(130) and (2.0483)(19)($\bar{3}$12). The chemical composition determined by the electron-microprobe analysis is (wt.%): K2O 19.55, Rb2O 0.58, ZnO 34.85, SO3 34.65, Cl 14.77, –O = Cl2 3.34, total 101.06. The empirical formula based on O + Cl = 5 apfu is K0.97Rb0.01Zn1.00S1.01O4.03Cl0.97. The simplified formula is KZn(SO4)Cl. The crystal structure was solved by direct methods and refined to R1 = 0.029 on the basis of 1965 independent observed reflections. The structure of belousovite consists of infinite [ZnSO4Cl] layers and K+ ions. [ZnSO4Cl] layers are formed by corner sharing mixed-ligand ZnO3Cl tetrahedra and SO4 tetrahedra. The topology of [ZnSO4Cl] layers in belousovite is identical to [Si4O10]4– layers in the minerals of the apophyllite group. A review of mixed-ligand ZnOmCln coordination polyhedra in minerals and inorganic compounds is given.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Graham

References

Adiwidjaja, G., Friese, K., Klaska, K.H. and Schlueter, J. (1997) The crystal structure of gordaite NaZn4SO4(OH)6Cl6(H2O). Zeitschrift für Kristallographie – Crystalline Materials, 212, 704707.Google Scholar
Belousov, A., Belousova, M. and Voight, B. (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bulletin of Volcanology, 61, 324342.Google Scholar
Belousov, A., Belousova, M. and Nechayev, A. (2013) Video observations inside conduits of erupting geysers in Kamchatka, Russia, and their geological framework: Implications for the geyser mechanism. Geology, 41, 387390.Google Scholar
Belousov, A., Belousova, M., Edwards, B., Volynets, A. and Melnikov, D. (2015). Overview of the precursors and dynamics of the 2012-13 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia. Journal of Volcanology and Geothermal Research, 307, 2237.Google Scholar
Bosson, B. (1976) The crystal structures of RbZnSO4Cl and TlZnSO4Cl. Acta Crystallographica, B32, 20442047.Google Scholar
Brehler, B. and König, B. (1969) Kristallstruktur von Kaliumtrichlorozincatmonohydrat. Naturwissenschaften, 56, 279279.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica. B47, 192197.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proceedings of the Russian Mineralogical Society, 146, 104107.Google Scholar
Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA.Google Scholar
Burns, P.C., Roberts, A.C. and Nikischer, A.J. (1998) The crystal structure of Ca(Zn8(SO4)2(OH)12Cl2)(H2O)9, a new phase from slag dumps at Val Varenna, Italy. European Journal of Mineralogy, 10, 923930.Google Scholar
Dunn, P.J. and Wilson, W.E. (1978) Nomenclature revisions in the apophyllite group: hydroxyapophyllite, apophyllite, fluoroapophyllite. Mineralogical Record, 9, 9598.Google Scholar
Dunn, P.J., Rouse, R.C., Norberg, J.A. and Peacor, D.R. (1978) Hydroxyapophyllite, a new mineral, and a redefinition of the apophyllite group. I. Description, occurences, and nomenclature. II. Crystal structure. American Mineralogist, 63, 196202.Google Scholar
Fedotov, S.A. and Markhinin, Ye.K. (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York.Google Scholar
Follner, H. and Brehler, B. (1970) Die Kristallstruktur des ZnCl2(H2O)1.333. Acta Crystallographica, B26, 16791682.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hawthorne, F.C. and Sokolova, E. (2002) Simonkolleite, Zn5(OH)8Cl2(H2O), a decorated interrupted-sheet structure of the form [MΦ2]4. Canadian Mineralogist, 40, 939946.Google Scholar
Jiang, H., Feng, M.L. and Mao, J.G. (2006) Synthesis, crystal structures and characterizations of BaZn(SeO3)2 and BaZn(TeO3)Cl2. Journal of Solid State Chemistry, 179, 19111917.Google Scholar
Jo, V., Kim, M.K., Lee, D.W., Shim, I.W. and Ok, K.M. (2010) Lone pairs as chemical scissors in new antimony oxychlorides, Sb2ZnO3Cl2 and Sb16Cd8O25Cl14. Inorganic Chemistry, 49, 29902995.Google Scholar
Johnsson, M. and Törnroos, K.W. (2003 a) A synthetic zinc tellurium oxochloride, Zn2(TeO3)Cl2. Acta Crystallographica, C 59, i53i54.Google Scholar
Johnsson, M. and Törnroos, K.W. (2003 b) Synthesis and crystal structure of the layered compound CuZn(TeO3)Cl2. Solid State Sciences, 5, 263266.Google Scholar
Johnsson, M. and Törnroos, K.W. (2007) Zinc selenium oxochloride, beta-Zn2(SeO3)Cl2, a synthetic polymorph of the mineral sophiite. Acta Crystallographica, C63, i34i36.Google Scholar
Jones, P.G., Schelbach, R., Schwarzmann, E. and Thoene, C. (1988) Diaquabis(tetrachloroaurate(III)-Cl1,Cl2)zinc(II). Acta Crystallographica, C44, 11621164.Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Structure, Bonding and Classification. Berlin Heidelberg New York Tokyo, Springer.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. Canadian Mineralogist, 45, 13071324.Google Scholar
Menyailov, I.A. and Nikitina, L.P. (1980 a) Chemistry and metal contents of magmatic gases: the new Tolbachik volcanoes case (Kamchatka). Bulletin of Volcanology, 43, 197205.Google Scholar
Menyailov, I.A., Nikitina, L.P. and Shapar, V.N. (1980 b) Geochemical Features of Exhalations of Great Tolbachik Fissure Eruption. Nauka, Moscow 235 p. [in Russian].Google Scholar
Pekov, I.V., Zubkova, N.V., Pautov, L.A., Yapaskurt, V.O., Chukanov, N.V., Lykova, I.S., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2015 a) Chubarovite, KZn2(BO3)Cl2, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Canadian Mineralogist, 53, 273284.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Lykova, I.S., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G., Britvin, S.N. and Pushscharovsky, D.Yu. (2015 b) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. I. Mellizinkalite, K3Zn2Cl7. European Journal of Mineralogy, 27, 247253.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Britvin, S.N., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2015 c) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. II. Flinteite, K2ZnCl4. European Journal of Mineralogy, 27, 581588.Google Scholar
Pekov, I.V., Zubkova, N.V., Britvin, S.N., Yapaskurt, V.O., Chukanov, N.V., Lykova, I.S., Sidorov, E.G. and Pushcharovsky, D.Y. (2015 d) New zinc and potassium chlorides from fumaroles of the Tolbachik volcano, Kamchatka, Russia: mineral data and crystal chemistry. III. Cryobostryxite, KZnCl3·2H2O. European Journal of Mineralogy, 27, 805812.Google Scholar
Pekov, I.V., Lykova, I.S., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Turchkova, A.G., Britvin, S.N., Sidorov, E.G. and Scheidl, K.S. (2016 a) Zincobradaczekite, IMA 2016-041. CNMNC Newsletter No. 33, October 2016, page 1137; Mineralogical Magazine, 80, 11351144.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Britvin, S.N., Chukanov, N.V., Lykova, I.S., Sidorov, E.G. and Pushcharovsky, D.Y. (2016 b) Zincomenite, ZnSeO3, a new mineral from the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 28, 9971004.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Semenova, T.F., Rozhdestvenskaya, I.V., Filatov, S.K. and Vergasova, L.P. (1992) Crystal structure and physical properties of sophiite, Zn2(SeO3)Cl2, a new mineral. Mineralogical Magazine, 56, 241245.Google Scholar
Shuvalov, R.R., Vergasova, L.P., Semenova, T.F., Filatov, S.K., Krivovichev, S.V., Siidra, O.I. and Rudashevsky, N.S. (2013) Prewittite KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: Description and crystal structure. American Mineralogist, 98, 463469.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Kayukov, R.A., Vergasova, L.P., Filatov, S.K., Karpov, G.A. and Shilovskikh, V.V. (2016) Belousovite, IMA 2016-047. CNMNC Newsletter No. 33, October 2016, page 1139; Mineralogical Magazine, 80, 11351144.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017 a) Copper oxosulfates from fumaroles of Tolbachik vulcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.Google Scholar
Siidra, O.I., Lukina, E.A., Nazarchuk, E.V., Depmeier, W., Bubnova, R.S., Agakhanov, A.A., Avdontseva, E.Y., Filatov, S.K. and Kovrugin, V.M. (2017 b) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineralogical Magazine, 82, 257274.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., Lukina, E.A., Zaitsev, A.N., Turner, R., Filatov, S.K., Pekov, I.V., Karpov, G.A. and Yapaskurt, V.O. (2017 c) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Mineralogy and Petrology, 112, 123134.Google Scholar
Suesse, P. and Brehler, B. (1964) Die Kristallstruktur des KZnCl3(H2O)2. Beiträge zur Mineralogie und Petrographie, 10, 132140.Google Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.Google Scholar
Zhu, L., Seff, K., Witzke, T. and Nasdala, L. (1997) Crystal structure of Zn4Na(OH)6SO4Cl × 6(H2O). Journal of Chemical Crystallography, 27, 325329.Google Scholar
Zubkova, N.V., Pekov, I.V., Pushcharovsky, D.Yu. and Chukanov, N.V. (2009) The crystal structure and refined formula of mountainite, KNa2Ca2[Si8O19(OH)]·6H2O. Zeitschrift für Kristallographie – Crystalline Materials, 224, 389396.Google Scholar
Supplementary material: File

Siidra et al. supplementary material

Figures 1S-4S

Download Siidra et al. supplementary material(File)
File 436.4 KB
Supplementary material: File

Siidra et al. supplementary material

Supplementary data

Download Siidra et al. supplementary material(File)
File 62.2 KB