Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:46:58.110Z Has data issue: false hasContentIssue false

Topaz as an important host for Ge in granites and greisens

Published online by Cambridge University Press:  05 July 2018

K. Breiter*
Affiliation:
Institute of Geology, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
N. Gardenová
Affiliation:
Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
T. Vaculovič
Affiliation:
Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic CEITEC, Masaryk University, Kamenice 5, CZ-602 00, Brno, Czech Republic
V. Kanický
Affiliation:
Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic CEITEC, Masaryk University, Kamenice 5, CZ-602 00, Brno, Czech Republic
*

Abstract

The composition of topaz from different granites and greisen in the Krušné Hory/Erzgebirge area was investigated using electron microprobe analysis (EMPA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). All topaz grains are rich in F (17.9 19.8 wt.%, 1.73 1.90 a.p.f.u.) and the most important minor/trace elements are P, Ge and Ga. Contents of P up to 1 wt.% P2O5 (0.025 a.p.f.u.) were found in topaz from the strongly peraluminous P-rich magmatic systems at Podlesí. Regardless of genetic type, topaz from granites typically contains 50 100 ppm Ge. The greatest amounts (up to 204 ppm Ge) were found in topaz from quartz-topaz-apatite greisen in Krásno. In fractionated granites and greisens, topaz is calculated to contain 23 87% of the bulk Ge content in the rock. In contrast, topaz does not concentrate Ga. The Ga content of topaz (typically 5 35 ppm in S-type granites, <10 ppm Ga in A-type granites) is usually smaller than the bulk Ga content of the rock. In addition, up to 16 ppm Sc, 23 ppm Sn and >400 ppm Fe may be present.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigbe, S.O., Ewa, I.O.B., Ogunleye, P.O. and Oladipo, M.O.A. (2013) Elemental characterization of some Nigerian gemstones: tourmaline, fluorite and topaz by instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 295, 801805.CrossRefGoogle Scholar
Baksheev, A.I., Prokofev, V.Yu., Zaraisky, G.P., Chitalin, A.F., Yapaskurt, V.O., Nikolaev, Yu.N., Tikhomirov, P.L., Nagornaya, E.V., Rogacheva, L.I., Gorelikova, N.V. and Kononov, O.V. (2012) Tourmaline as a prospecting guide for the porphyry- style deposits. European Journal of Mineralogy, 24, 957979.CrossRefGoogle Scholar
Bell, C.K. (1955) Some aspects of the geochemistry of gallium. Bulletin of the Geological Society of America, 6, 15291530.Google Scholar
Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta, 49, 24092422.CrossRefGoogle Scholar
Breiter, K. (2012) Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos, 151, 105121.CrossRefGoogle Scholar
Breiter, K. and Kronz, A. (2004) Phosphorus-rich topaz from fractionated granites (Podlesí, Czech Republic). Mineralogy and Petrology, 81, 235247.Google Scholar
Breiter, K., Förster, H. and Seltmann, R. (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province. Mineralium Deposita, 34, 505521.CrossRefGoogle Scholar
Breiter, K., Müller, A., Leichmann, J. and Gabašová, A. (2005) Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic. Lithos, 80, 323345.CrossRefGoogle Scholar
Burton, J.D., Culkin, F. and Riley, J.P. (1959) The abundances of gallium and germanium in terrestrial materials. Geochimica et Cosmochimica Acta, 16, 151180.CrossRefGoogle Scholar
Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimu˚nek, Z., Štorch, P., Vašíček, Z., Zajíc, J. and Zapletal, J. (2010) Outline of the Geology of the Bohemian Massif. 295 pp., Czech Geological Survey, Prague.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rock- Forming Minerals. Second edition, Vol. 1A, Orthosilicates. The Geological Society, London, pp. 801815.Google Scholar
Duck, J.J. (1986) An investigation of factors controlling the partitioning of trace germanium and gallium between topaz and quartz. MSc thesis, University of Pittsburgh, Pennsylvanis, USA, 76 pp.Google Scholar
Duck, J.J. and Cohen, A.J. (1986) Partition of trace germanium and gallium between intergrown topaz and quartz. Abstracts with program 1986; the Fourteenth general meeting of the International Mineralogical Association, Stanford, California, USA (C.T. Prewitt, chairman), p. 93 (abstract).Google Scholar
El-Hinnawi, E.E. and Hofmann, R. (1966) Bemerkungen zur Verteilung von Spurenelementen im Topas. Chemie der Erde, 25, 230236.Google Scholar
Förster, H.-J., Gottesmann, B., Tischendorf, G., Siebel, W., Rhede, D., Seltmann, R. and Wasternack, J. (2007) Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: a record of source heterogeneity of post-collisional felsic magmatism. Neues Jahrbuch für Mineralogie, Abhandlungen, 183, 123147.CrossRefGoogle Scholar
Goldschmidt, V.M. (1954) Geochemistry. 730 pp. Oxford University Press, UK.Google Scholar
Goldschmidt, V.M. and Peters, C. (1933) Zur Geochemie des Germaniums. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, Fachgruppe IV, 33, 141166.Google Scholar
Gottesmann, B., Wasternack, J. and Märtens, S. (1994) The Gottesberg tin deposit (Saxony): Geological and metallogenetic characteristic. Pp. 110115. in: Metallogeny of Collisional Orogens, (Seltmann, R., Kampf, H. and Möller, P., editors). Czech Geological Survey, Prague.Google Scholar
Govindaraju, K. (1994) Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18, 1158.CrossRefGoogle Scholar
Harris, P.G. (1954) The distribution of germanium among coexisting phases of partly glassy rocks. Geochimica et Cosmochimica Acta, 5, 185195.CrossRefGoogle Scholar
Höll, R., Kling, M. and Schroll, E. (2007) Metallogenesis of germanium – a review. Ore Geology Reviews, 30, 145180.CrossRefGoogle Scholar
Jarchovský, T. (2006) The nature and genesis of greisen stocks at Krásno, Slavkovský les area – Western Bohemia, Czech Republic. Journal of the Czech Geological Society, 51, 201216.Google Scholar
Johan, Z., Oudin, E. and Picot, P. (1983) Analogues germanifères et gallifères des silicates et oxydes dans les gisements de zinc des Pyrénées centrales, Frances; argutite et carboirite, deux nouvelles espèces minérales. Tschermaks Mineralogische und Petrographische Mitteilungen, 31, 97119.CrossRefGoogle Scholar
Leithner, H. (1981). Russische Topase und Berylle. Lapis, 6, No. 9, 914.Google Scholar
Leithner, H. (2008) Famous mineral localities: The Königskrone topaz mine, Schneckenstein, Saxony, Germany. Mineralogical Record, 39, 355367.Google Scholar
Lyckberg, P. (2001) The minerals of Russia – gem beryl and topaz of Sherlovaya Gora, Transbaikal, Russia, a commonly mislabeled locality. Mineralogical Record, 32, 45.Google Scholar
Northrup, P.A. and Reeder, R.J. (1994) Evidence for the importance of growth-surface structure to trace element incorporation in topaz. American Mineralogist, 79, 11671175.Google Scholar
Oftedal, I. (1963) The germanium contents in some Norwegian topaz specimens. Norsk Geologisk Tidsskrift, 43, 267269.Google Scholar
Ossenkopf, P. and Helbig, C. (1975) Zum geologischen Aufbau der Zinnerzlagerstätte Altenberg und speziell zum Pyknitgestein. Zeitschrift für Angewandte Geologie, 21, 5766.Google Scholar
Papish, J. (1928) Occurrence of germanium in topaz. Science, 68, 350351.CrossRefGoogle Scholar
Papish, J. (1929) New occurrences of germanium. II. Occurrence of germanium in silicate minerals. Economic Geology, 24, 470480.CrossRefGoogle Scholar
Schlüter, J., Geisler, T., Pohl, D. and Stephan, T. (2010) Krieselite, Al2GeO4(F,OH)2: a new mineral from the Tsumeb mine, Namibia, representing the Ge analogue of topaz. Neues Jahrbuch für Mineralogie, Abhandlungen, 187, 3340.CrossRefGoogle Scholar
Schrön, W. (1969) Zur Geochemie des Germaniums. II. Lagerstä ttengenetische Probleme. Freiberger Forschungshefte C, 246, 565.Google Scholar
Seim, R. and Leipe, T. (1987) Die magmatische Entwicklung einer mehrphasigen Zinngranitintrusion (Altenberg/Erzgebirge). Chemie der Erde – Geochemistry, 46, 247258.Google Scholar
Seim, R. and Schweder, P. (1962) Germaniumgehalt im Topas. Naturwissenschaften, 49, 538.CrossRefGoogle Scholar
Seim, R. and Schweder, P. (1969) Untersuchungen zum Germaniumgehalt im Topas. Chemie der Erde, 28, 8390.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Shcherba, G.N., Zamyatina, G.M., Kalinin, S.K. and Mukhlya, K.A. (1966) Germanium in some greisens in Kazakhstan. Geokhimiya, 11, 13651368. (in Russian).Google Scholar
Veksler, I.V. and Thomas, R. (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contributions to Mineralogy and Petrology, 143, 673683.CrossRefGoogle Scholar
Wasim, M., Zafar, W.A., Tufail, M., Arif, M., Daud, M. and Ahmad, A. (2011) Elemental analysis of topaz from northern areas of Pakistan and assessment of induced radioactivity level after neutron irradiation for color induction. Journal of Radioanalytical and Nuclear Chemistry, 287, 821826.CrossRefGoogle Scholar
Weisbach, A. (1866) Argyrodit, ein neues Silbererz. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 2, 6771.Google Scholar
Winkler, C. (1886) Germanium,, Ge, ein neues nichtmetallisches Element. Berrichte der Deutschen Chemischen Gesselschaft, 19, 210211.CrossRefGoogle Scholar
Wunder, B. and Marler, B. (1997) Ge-analogues of aluminum silicates: high-pressure synthesis and properties of orthorhombic Al2GeO4(OH)2 . European Journal of Mineralogy, 9, 11471158.CrossRefGoogle Scholar