Published online by Cambridge University Press: 05 July 2018
We summarize the main ideas used to determine the thermodynamic properties of pure systems and binary alloys from first principles calculations. These are based on the ab initio calculations of free energies. As an application we present the study of iron and iron alloys under Earth,s core conditions. In particular, we report the whole melting curve of iron under these conditions, and we put constraints on the composition of the core. We found that iron melts at 6350士600 K at the pressure corresponding to the boundary between the solid inner core and the liquid outer core (ICB). We show that the core could not have been formed from a binary mixture of Fe with S, Si or O and we propose a ternary or quaternary mixture with 8—10% of S/Si in both liquid and solid and an additional ~8% of oxygen in the liquid. Based on this proposed composition we calculate the shift of melting temperature with respect to the melting temperature of pure Fe of ~—700 K, so that our best estimate for the temperature of the Earth's core at ICB is 5650±600 K.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.