Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T01:54:25.476Z Has data issue: false hasContentIssue false

Structure refinement, hydrogen-bond system and vibrational spectroscopy of hohmannite, Fe3+2 [O(SO4)2]·8H2O

Published online by Cambridge University Press:  02 January 2018

G. Ventruti*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universita` di Bari, via Orabona, 4, I-70125 Bari, Italy
G. Della Ventura
Affiliation:
Dipartimento Scienze, Universita` di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Rome, Italy
R. Orlando
Affiliation:
Dipartimento di Chimica, Universita` di Torino, Via P. Giuria 5, Turin I-10125, Italy
F. Scordari
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Universita` di Bari, via Orabona, 4, I-70125 Bari, Italy

Abstract

The crystal structure of hohmannite, Fe3+2[O(SO4)2]·8H2O, was studied by means of single-crystal X-ray diffraction (XRD) and vibrational spectroscopy. The previous structural model was confirmed, though new diffraction data allowed the hydrogen-bond system to be described in greater and more accurate detail. Ab initio calculations were performed in order to determine accurate H positions and to support the experimental model obtained from XRD data. Infrared and Raman spectra are presented for the first time for this compound and comments are made on the basis of the crystal structure and the known literature for sulfate minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, H.H. and Kerr, P.F. (1965) Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. American Mineralogist 50, 132-147.Google Scholar
Bandy, M.C. (1938) Mineralogy of three sulphate deposits of Northern Chile. American Mineralogist 23, 669-760.Google Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: Software for guided crystal structure analysis. Journal of Applied Crystallography 36, 1487.CrossRefGoogle Scholar
Bishop, J.L., Dyar, M.D., Lane, M.D. and Banfield, J. (2004) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. International Journal of Astrobiology 3, 275-285.CrossRefGoogle Scholar
Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 33-38.CrossRefGoogle Scholar
Breese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.CrossRefGoogle Scholar
Bruker, (2008) APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison,Wisconsin, USA.Google Scholar
Burns, R.G. (1987) Ferric sulfates on Mars. Pp. E570–E574 in: Journal of Geophysical Research, Proceedings of the seventeenth Lunar and Planetary Science Conference, Part 2. Vol. 92, No. B4, Houston, Texas, USA, 30 March 1987. American Geophysical Union, Washington, DC.Google Scholar
Cejka, J., Sejkora, J., Plasil, J., Bahfenne, S., Palmer, Sara, J., Rintoul, L. and Frost, R.L. (2011) A vibrational spectroscopic study of hydrated Fe3+ hydroxyl-sulphates; polymorphic minerals butlerite and parabutlerite. Spectrochimica Acta A 79, 1356-1363.CrossRefGoogle ScholarPubMed
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., Krenn, K., Craig, M.A., Marcino, D., Methot, M., Strong, J., Mustard, J.F., Blaney, D.L., Bell III J.F. and Vilas, F. (2006) Detection and discrimination of sulphate minerals using reflectance spectroscopy. Icarus 184, 121-157.CrossRefGoogle Scholar
Della Ventura, G., Ventruti, G., Bellatreccia, F., Scordari, F. and Cestelli Guidi, M. (2013) FTIR transmission spectroscopy of sideronatrite, a sodiumiron hydrous sulfate. Mineralogical Magazine 77, 499-507.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O_O hydrogen bonds. Acta Crystallographica, B44, 341-344.CrossRefGoogle Scholar
Frost, R.L., Williams, P.A., Martens, W., Leverett, P. and Kloprogge, J.T. (2004) Raman spectroscopy of basic copper(II) and some complex copper(II) sulfate minerals: implications for hydrogen bonding. American Mineralogist 89, 1130-1137.CrossRefGoogle Scholar
Frost, R.L., López, A., Scholz, R., Xi, Y., da Silveira, A.J. and Fernandes Lima, R.M. (2013) Characterization of the sulphate mineral amarantite – Fe3+ 2 (SO4)2O·7H2O using infrared, Raman spectroscopy and thermogravimetry. Spectrochimica Acta A 114, 85-91.CrossRefGoogle Scholar
Jerz, J.K. and Rimstidt, J.D. (2003) Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact. American Mineralogist 88, 1919-1932.CrossRefGoogle Scholar
Johnson, J.R., Bell, J.F., Cloutis, E., Staid, M., Farrand, W.H., McCoy, T., Rice, M., Wang, A. and Yen, A. (2007) Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophysical Research Letters, 34, L13202.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B. and Schröde, C. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306, 1740-1745.CrossRefGoogle ScholarPubMed
Knittle, E., Phillips, W. and Williams, G. (2001) An infrared and Raman spectroscopic study of gypsum at high pressure. Physics and Chemistry of Minerals 28, 630-640.CrossRefGoogle Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist 92, 1-18.CrossRefGoogle Scholar
Lane, M.D., Bishop, J.L., Dyar, M.D., King, P.L., Parente, M. and Hyde, B.C. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist 93, 728-739.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie 130, 1047-1059.CrossRefGoogle Scholar
McCollom, T.M., Ehlmann, B.L., Wang, A., Hynek, B.M., Moskowitz, B. and Berquó , T.S. (2014) Detection of iron substitution in natroalunitenatrojarosite solid solutions and potential implications for Mars. American Mineralogist 99, 948-964.CrossRefGoogle Scholar
Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C. and Redhammer, G.J. (2013) Looking for jarosite on Mars: The low-temperature crystal structure of jarosite. American Mineralogist 98, 1966-1971.CrossRefGoogle Scholar
Murphy, P.J., Smith, A.M.L., Hudson-Edwards, K.A., Dubbin, W.E. and Wright, K. (2009) Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al, Cr3+, Fe3+ and V3+ at the B site. The Canadian Mineralogist 47, 663-681.CrossRefGoogle Scholar
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Fifth edition. Wiley and Sons, New York.Google Scholar
Ngenda, R.B., Segers, L. and Kongolo, P.K. (2009) Base metals recovery from zinc hydrometallurgical plant residues by digestion method. Hydrometallurgy Conference 2009, The Southern African Institute of Mining and Metallurgy, Johannesburg, pp. 17-29.Google Scholar
Nordstrom, D.K., Alpers, C.N., Ptacek, C.J. and Blowes D.W. (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology 34, 254-258.CrossRefGoogle Scholar
Omori, K. and Kerr, P.F. (1963) Infrared studies of saline sulphate minerals. Geological Society of America Bulletin 74, 709-734.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana’s System of Mineralogy. John Wiley and Sons, Inc., New York.Google Scholar
Ross, S.D. (1974) Sulphates and other oxy-anions of group VI. Pp. 423-444. in: The Infrared Spectra of Minerals (V.C. Farmer, editor), The Mineralogical Society, London.CrossRefGoogle Scholar
Ruhl, A.S. and Kranzmann, A. (2012) Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities. International Journal of Greenhouse Gas Control 9, 85-90.CrossRefGoogle Scholar
Saunders, V.R., Dovesi, R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Harrison, N.M., Doll, K., Civalleri, B., Bush, L.J., D’Arco, Ph. and Llunell, M. (2003) CRYSTAL 2003 user’s manual. University of Torino, Turin, Italy.Google Scholar
Scordari, F. (1978) The crystal structure of hohmannite, Fe2(H2O)4[(SO4)2O]·4H2O and its relationship to ama rant i t e , Fe 2(H2O)4 [ ( SO4 ) 2O]·3H2O. Mineralogical Magazine 42, 144-146.CrossRefGoogle Scholar
Scordari, F., Ventruti, G. and Gualtieri, A.F. (2004) The structure of metahohmannite, Fe2 3+[O(SO4)2]4H2O, by in situ synchrotron powder diffraction. American Mineralogist 89, 265-370.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System, 9th Edition. Schweizerbart, Stuttgart, Germany, 870 pp.Google Scholar
Ventruti, G., Scordari, F., Della Ventura, G., Bellatreccia, F., Gualtieri, A.F. and Lausi, A. (2013) The thermal stability of sideronatrite and its decomposition products in the system Na2O–Fe2O3–SO2–H2O. Physics and Chemistry of Minerals 40, 659-670.CrossRefGoogle Scholar
Ventruti, G., Della Ventura, G., Scordari, F., Susta, U. and Gualtieri, A.F. (2015) In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products Journal of Thermal Analysis and Calorimetry 119, 1793-1802.Google Scholar
Vicenzi, E.P., Fries, M., Fahey, A., Rost, D., Greenwood, J.P. and Steele, A. (2007) Detailed elemental, mineralogical, and isotopic examination of jarosite in Martian meteorite MIL 03346. 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), March 12–16. 2007, League City, Texas, USA. LPI Contribution No. 1338, p.2335.Google Scholar
Welch, S.A., Christy, A.G., Kirste, D., Beavis, S.G. and Beavis, F. (2007) Jarosite dissolution I – trace cation flux in acid sulfate soils. Chemical Geology 245, 183-197.CrossRefGoogle Scholar
Welch, S.A., Kirste, D., Christy, A.G., Beavis, F.R. and Beavis, S.G. (2008) Jarosite dissolution II – reaction kinetics, stoichiometry and acid flux. Chemical Geology 254, 73-86.CrossRefGoogle Scholar
Welch, S.A., Christy, A.G., Isaacson, L. and Kirste, D. (2009) Mineralogical control of rare earth elements in acid sulfate soils. Geochimica et Cosmochimica Acta 73, 44-64.CrossRefGoogle Scholar