Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:07:52.862Z Has data issue: false hasContentIssue false

Oxyplumboroméite, Pb2Sb2O7, a new mineral species of the pyrochlore supergroup from Harstigen mine, Värmland, Sweden

Published online by Cambridge University Press:  05 July 2018

U. Hålenius*
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden
F. Bosi
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, P. le A. Moro 5, I-00185 Rome, Italy CNR-IGG Istituto di Geoscienze e Georisorse, Sede di Roma, P. le A. Moro, 5, I-00185 Roma, Italy
*

Abstract

Oxyplumboroméite, Pb2Sb2O7, is a new mineral of the roméite group of the pyrochlore supergroup (IMA 2013-042). It is found together with calcite and leucophoenicite in fissure fillings in tephroite skarn at the Harstigen mine, Värmland, Sweden. The mineral occurs as yellow to brownish yellow rounded grains or imperfect octahedra. Oxyplumboroméite has a Mohs hardness of ∼5, a calculated density of 6.732 g/cm3 and is isotropic with a calculated refractive index of 2.061. Oxyplumboroméite is cubic, space group Fdm, with the unit-cell parameters a = 10.3783(6) Å, V = 1117.84(11) Å3 and Z = 8. The strongest five X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 2.9915(100)(222), 2.5928(32)(400), 1.8332(48)(440), 1.5638(38)(622) and 1.1900(12)(662). The crystal structure of oxyplumboroméite was refined to an R1 index of 3.02% using 160 unique reflections collected with MoKα radiation. Electron microprobe analyses in combination with crystal-structure refinement, infrared, Mössbauer and electronic absorption spectroscopy resulted in the empirical formula A(Pb0.92Ca0.87Mn0.09Sr0.01Na0.05)Σ1.93B(Sb1.73Fe3+0.27)Σ2.00X+Y[O6.64(OH)0.03]Σ6.67. Oxyplumboroméite is the Pb analogue of oxycalcioroméite, ideally Ca2Sb2O7.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arents, A. (1867) Partzite, a new mineral. American Journal of Science, 93, 362.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Atencio, D., Ciriotti, M.E. and Andrade, M.B. (2013) Fluorcalcioroméite, (Ca,Na)2Sb5+ 2 (O,OH)6F, a new roméite-group mineral from Starlera mine, Ferrera, Grischun, Switzerland: description and crystal structure. Mineralogical Magazine, 77, 467473.CrossRefGoogle Scholar
Beudant, F.S. (1837) Traité élémentaire de Minéralogie (deuxième édition). Carilian Jeune, Libraire, Paris, France.Google Scholar
Biagioni, C. and Orlandi, P., (2012) Oxycalcioroméite, IMA2012-022. CNMNC Newsletter No. 14, October 2012, page 1283; Mineralogical Magazine, 76, 12811288.Google Scholar
Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 109, 68586919.CrossRefGoogle ScholarPubMed
Brown, I.D. and Altermatt, D., (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Brugger, J., Gieré, R.R., Graeser, S., and Meisser, N.N. (1997) The crystal chemistry of roméite. Contributions to Mineralogy and Petrology, 127, 136146.CrossRefGoogle Scholar
Christy, A.G. and Atencio, D., (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Christy, A.G. and Gatedal, K., (2005) Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from Långban, Värmland, Sweden. Mineralogical Magazine, 69, 9951018.CrossRefGoogle Scholar
Flink, G. (1887) Mineralogiska notiser I.7. Monimolit från Pajsberg. Bihangtill Kongliga Vetenskapsakademiens Handlingar, 12, 3540.Google Scholar
Hector, A.L. and Wiggin, S.B. (2004) Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. Journal of Solid State Chemistry, 177, 139145.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hussak, E.E. and Prior, G.T. (1895) Lewisite and z irkeli t e , two new Brazi l ian mineral s. Mineralogical Magazine, 11, 8088.CrossRefGoogle Scholar
Igelström, L.J. (1865) Nya och sällsynta mineralier från Vermland. Öfversigt af Kongl. Vetenskaps- Akademiens Förhandlingar, 22, 227229.Google Scholar
Jernberg, P. and Sundqvist, T., (1983) A versatile Mössbauer analysis program. Uppsala University, Institute of Physics (UUIP-1090).451Google Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 11111115.CrossRefGoogle Scholar
Krivovichev and Brown (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitschrift fur Kristallographie, 216, 245247.Google Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mason, B. and Vitaliano, C.J. (1953) The mineralogy of the antimony oxides and antimonates. Mineralogical Magazine, 30, 100112.CrossRefGoogle Scholar
Matsubara, S., Kato, A.A., Shimizu, M., Sekiuchi, K., and Suzuki, Y., (1996) Romeite from Gozaisho mine, Iwaki, Japan. Mineralogical Journal, 18(4), 155160.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Chen, E.C.-C. and Raudsepp, M., (2009) Revised values of the bond valence parameters for [6]Sb(V)-O and [3–11]Sb(III)-O. Zeitschrift fur Kristallographie, 224, 423431.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F., (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175. in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum, New York.CrossRefGoogle Scholar
Riotte, E.N. (1867) Stetefeldtit, ein neues Mineral. Bergund Huettenmännische Zeitung, 26, 253254.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Walenta, K. (1983) Bismutostibiconit, ein neues Mineral der Stibiconitgruppe aus dem Schwarzwald. Chemie der Erde, 42, 7781.Google Scholar