Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:45:13.877Z Has data issue: false hasContentIssue false

Oxycalcioroméite, Ca2Sb2O6O, from Buca della Vena mine, Apuan Alps, Tuscany, Italy: a new member of the pyrochlore supergroup

Published online by Cambridge University Press:  05 July 2018

C. Biagioni*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
P. Orlandi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131 Padova, Italy
S. Bianchin
Affiliation:
ICIS-CNR, Corso Stati Uniti 4, I-35127 Padova, Italy

Abstract

The new mineral species oxycalcioroméite, Ca2Sb5+2O6O, has been discovered at the Buca della Vena mine, Stazzema, Apuan Alps, Tuscany, Italy. It occurs as euhedral octahedra, up to 0.1 mm in size, embedded in dolostone lenses in the baryte + pyrite + iron oxides ore. Associated minerals are calcite, cinnabar, derbylite, dolomite, hematite, 'mica', pyrite, sphalerite and 'tourmaline'. Oxycalcioroméite is reddish-brown in colour and transparent. It is isotropic, with ncalc = 1.950.

Electron microprobe analysis gave (wt.%; n = 6) Sb2O5 63.73, TiO2 3.53, SnO2 0.28, Sb2O3 10.93, V2O3 0.68, Al2O3 0.28, PbO 0.68, FeO 5.52, MnO 0.13, CaO 13.68, Na2O 0.83, F 1.20, O = F – 0.51, total 100.96. No H2O, above the detection limit, was indicated by either infrared or micro-Raman spectroscopies. The empirical formula, based on 2 cations at the B site, is (Ca1.073Fe2+0.338Sb3+0.330Na0.118Pb0.013Mn0.008)Σ=1.880(Sb5+1.734Ti0.194V0.040Al0.024Sn0.008)Σ=2.000(O6.682F0.278)Σ6.960. The crystal structure study gives a cubic unit cell, space group Fdm, with a 10.3042(7) Å, V 1094.06(13) Å3, Z = 8. The five strongest X-ray powder diffraction lines are [d(Å)I(visually estimated)(hkl)]: 3.105(m)(311); 2.977(s)(222); 2.576(m)(400); 1.824(ms)(440); and 1.556(ms)(622). The crystal structure of oxycalcioroméite has been solved by X-ray single-crystal study on the basis of 114 observed reflections, with a final R1 = 0.0114. It agrees with the general features of the members of the pyrochlore supergroup.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, M.B., Atencio, D., Chukanov, N.V. and Ellena, J., (2013) Hydrokenomicrolite, (□,H2O)2 Ta2(O,OH)6(H2O), a new microlite group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. American Mineralogist, 98, 292296.CrossRefGoogle Scholar
Andrade, M.B., Atencio, D., Yang, H., Downs, R.T., Persiano, A.I.C. and Ellena, J., (2012) Fluorcalciomicrolite, IMA 2012-036. CNMNC Newsletter No. 14, October 2012, page 1286: Mineralogical Magazine, 76, 12811288.Google Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Atencio, D., Ciriotti, M.E. and Andrade, D., (2013) Fluorcalcioroméite, (Ca,Na)2Sb5+ 2 (O,OH)6F, a new roméite-group mineral from Starlera mine, Ferrera, Grischun, Switzerland: description and crystal structure. Mineralogical Magazine, 77, 467473.CrossRefGoogle Scholar
Bahfenne, S. and Frost, R.L. (2009) Vibrational spectroscopic study of the antimonate mineral bindheimite Pb2Sb2O6(O,OH). Spectrochimica Acta, A74, 100103.CrossRefGoogle Scholar
Bahfenne, S. and Frost, R.L. (2010) Raman spectroscopic study of the antimonite mineral roméite. Spectrochimica Acta, A75, 637639.CrossRefGoogle Scholar
Benvenuti, M., Lattanzi, P., Tanelli, G., and Cortecci, G., (1986) The Ba-Fe-pyrite deposit of Buca della Vena, Apuan Alps, Italy. Rendiconti della Società Italiana di Mineralogia e Petrologia, 41, 347358.Google Scholar
Berlepsch, P., Armbruster, T., Brugger, J., Criddle, A.J. and Graeser, S., (2003) Tripuhyite, FeSbO4, revisited. Mineralogical Magazine, 67, 3146.CrossRefGoogle Scholar
Biagioni, C. (2009) Minerali della Provincia di Lucca. Associazione Micro-mineralogica Italiana, Cremona, Italy, 352 pp.Google Scholar
Bindi, L., Zoppi, M., and Bonazzi, P., (2006) Plumbomicrolite from the Ploskaya Mountain, Keivy Massif, Kola Peninsula, Russia: composition and crystal structure. Periodico di Mineralogia, 75, 5158.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brugger, J., Gieré, R., Graeser, S., and Meisser, N., (1997) The crystal chemistry of romé ite. Contributions to Mineralogy and Petrology, 127, 136146.CrossRefGoogle Scholar
Bruker AXS Inc. (2004) APEX 2. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Carmignani, L., Dessau, G., and Duchi, G., (1976) I giacimenti a barite, pirite e ossidi di ferro delle Alpi Apuane. Studio minerogenetico e strutturale. Nuove osservazioni sui giacimenti polimetallici. Bollettino della Società Geologica Italiana, 95, 10091061.Google Scholar
Černý, P., Hawthorne, F.C., Laflamme, J.H.G. and Hinthorne, J.R. (1979) Stibiobetafite, a new member of the pyroch lore group f rom Vež ná , Czechoslovakia. The Canadian Mineralogist, 17, 583588.Google Scholar
Christy, A.G. and Atencio, D., (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Christy, A.G. and Gatedal, K., (2005) Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from Långban, Värmland, Sweden. Mineralogical Magazine, 69, 9951018.CrossRefGoogle Scholar
Chukanov, N.V., Blass, G., Zubkova, N.V., Pekov, I.V., Pushcharovskii, D.Yu. and Prinz, H., (2013) Hydroxymanganopyrochlore: a new mineral from the Eifel Volcanic Region, Germany. Transactions (Doklady) of the Russian Academy of Sciences/Earth Science Section, 449, 342345.Google Scholar
Cortecci, G., Lattanzi, P., and Tanelli, G., (1985) Bariteiron oxide-pyrite deposits from Apuane Alps (Northern Tuscany, Italy). Memorie della Società Geologica Italiana, 30, 337345.Google Scholar
Ercit, T.S., Černý, P. and Hawthorne, F.C. (1993) Cesstibtantite – a geologic introduction to the inverse pyrochlores. Mineralogy and Petrology, 48, 235255.CrossRefGoogle Scholar
Fellin, M.G., Reiners, P.W., Brandon, M.T., Wüthrich, E., Balestrieri, M.L. and Molli, G., (2007) Thermochronologic evidence for the exhumational history of the Alpi Apuane metamorphic core complex, northern Apennines, Italy. Tectonics, 26, TC6015.Google Scholar
Frost, R.L. and Bahfenne, S., (2010) Raman spectroscopic study of the antimonite mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 . Radiation Effects and Defects in Solids, 165, 4653.CrossRefGoogle Scholar
Hussak, E. and Prior, G.T. (1895) Lewisite and zirkelite, two new Brazilian minerals. Mineralogical Magazine, 11, 8088.CrossRefGoogle Scholar
Hussak, E. and Prior, G.T. (1897) On tripuhyite, a new antimonate of iron, from Tripuhy, Brazil. Mineralogical Magazine, 11, 302303.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Kraus, W. and Nolze, G., (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III: some general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Matsubara, S., Kato, A., Shimizu, M., Sekiuchi, K., and Suzuki, Y., (1996) Romeite from Gozaisho mine, Iwaki, Japan. Mineralogical Journal, 18, 155160.CrossRefGoogle Scholar
Mellini, M., Orlandi, P., and Perchiazzi, N., (1983) Derbylite from Buca della Vena mine, Apuan Alps, Italy. The Canadian Mineralogist, 21, 513516.Google Scholar
Mills, S.J., Christy, A.G., Chen, E.C-C. and Raudsepp, M., (2009) Revised values of the bond valence parameters for [6]Sb(V)–O and [3,11]Sb(III)–O. Zeitschrift für Kristallographie, 224, 423431.CrossRefGoogle Scholar
Orberger, B. (1985) Les gisements de barytine – pyrite – oxydes de fer de la région de Santa Anna (Alpes Apuanes, Toscane, Italie). Thesis, University of Nancy, France, 263 pp.Google Scholar
Orlandi, P. and Dini, A., (2004) Die mineralien der Buca della Vena mine, Apuaner Berge, Toskana, Italien. Lapis, 1/2004, 1124.Google Scholar
Rouse, R.C., Dunn, P.J., Peacor, D.R. and Wang, L., (1998) Structural studies of the natural antimonian pyrochlores. I. Mixed valency, cation site splitting, and symmetry reduction in lewisite. Journal of Solid State Chemistry, 141, 562569.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for X-ray Crystallography, Volume C. Kluwer, Dordrecht, The Netherlands.Google Scholar
Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegner, R., and Pöllmann, H. (2011) Fluornatromicrolite, (Na,Ca,Bi)2Ta2O6F, a new mineral from Quixaba, Paraíba, Brazil. The Canadian Mineralogist, 49, 11051110.CrossRefGoogle Scholar
Zubkova, N.V., Pushcharovksy, D.Yu., Atencio, D., Arakcheeva, A.V. and Matioli, P.A. (2000) The crystal structure of lewisite, (Ca,Sb3+,Fe3+,Al,Na, Mn,□)2(Sb5+,Ti)2O6(OH). Journal of Alloys and Compounds, 296, 7579.CrossRefGoogle Scholar