Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:22:08.323Z Has data issue: false hasContentIssue false

Hydrogen bonding in ikaite, CaCO3.6H2O

Published online by Cambridge University Press:  05 July 2018

I. P. Swainson*
Affiliation:
Neutron Program for Materials Research, National Research Council of Canada, Chalk River Laboratories, Chalk River, ON, K0J 1J0, Canada
R. P. Hammond
Affiliation:
Neutron Program for Materials Research, National Research Council of Canada, Chalk River Laboratories, Chalk River, ON, K0J 1J0, Canada

Abstract

Ikaite is a metastable hexahydrate of calcium carbonate, forming in aqueous conditions near freezing conditions. Neutron powder diffraction data of synthetic deuterated ikaite, collected at seven temperatures from 4 to 270 K, were refined. The linear thermal expansion coefficients are quite anisotropic, being smaller in the direction of the C—O bond. A review of the hydrogen-bonding scheme around the (CaCO03) ion pair is given and an additional weak potential hydrogen bond is suggested. Temperature-dependent growth of the atomic displacement factors of the carbonate O1 atom agrees with the previous suggestion of a possible low-frequency, hindered librational mode of the carbonate group.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bischoff, J.L., Fitzpatrick, J.A. and Rosenbauer, R.J. (1992) The solubility and stabilization of ikaite (CaCO3.6H2O) from 0° to 25°C: Environmental and paleoclimatic implications for thinolite tufa. Journal of Geology, 101, 2133.CrossRefGoogle Scholar
Buchardt, B., Seaman, P., Stockmann, G., Wilken, M.V.U., Duwel, L., Kristiansen, A., Jenner, C., Whiticar, M.J., Kristensen, R.M., Petersen, G.H. and Thorbjorn, L. (1997) Submarine columns of ikaite tufa. Nature, 390, 129130.CrossRefGoogle Scholar
de Leeuw, N.H. and Parker, S.C. (1997) Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces. Journal of the Chemical Society, Faraday Transactions, 93, 467475.CrossRefGoogle Scholar
Dickens, B. and Brown, W.E. (1970) The crystal structure of calcium carbonate hexahydrate at ∼—120°C. Inorganic Chemistry, 9, 480486.Google Scholar
Ferrario, M., LyndenBell, R.M. and McDonald, R.M. (1994) Structural fluctuations and the order-disorder phase transition in calcite. Journal of Physics —Condensed Matter, 6, 13451358.CrossRefGoogle Scholar
Hesse, K.-F., Kuppers, H. and Suess, E. (1983) Refinement of the structure of ikaite, CaCO3.6H2O. Zeitschrift für Kristallographie, 163, 227231.Google Scholar
Jansen, J.H.F., Woensdregt, C.F., Loositra, M.J. and van der Gaast, S.J. (1987) Ikaite pseudomorphs in the Zaire deep-sea fan: an intermediate between calcite and porous calcite. Geology, 15, 245248.2.0.CO;2>CrossRefGoogle Scholar
Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding, Oxford University Press, New York, and Oxford, UK.Google Scholar
Larson, A.C. and Von Dreele, R.B. (1986) GSAS. General Structure Analysis System . Los Alamos National Laboratory, LAUR 86-748, USA.Google Scholar
Marland, G. (1975) The stability of CaCO3.6H2O (ikaite). Geochimica et Cosmochimica Acta, 39, 8391.CrossRefGoogle Scholar
Newton, M.D., Jeffrey, G.A. and Takagi, S. (1979) Application of ab-initio molecular orbital calculations to the structural moieties of carbohydrates. 5. Journal of the American Chemical Society, 101, 19912002.CrossRefGoogle Scholar
Pauly, H. (1963) ‘Ikaite’,a new mineral from Greenland. Arctic, 16, 263264.CrossRefGoogle Scholar
Pelouze, M.J. (1865) Sur une combinaison nouvelle d’eau et de carbonate de chaux. Chemical Review, 60, 429431.Google Scholar
Spek, A.L. (2001) PLATON, a multipurpose crystallographic tool. Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.Google Scholar
Stein, C.I. and Smith, A.J. (1985) Authigenic carbonate nodules in the Nankai Trough, Site 583: Initial Reports of the Deep Sea Drilling Project, Volume 77. US Government Printing Office 659-668, Washington D.C.CrossRefGoogle Scholar
Suess, E., Balzer, W., Hesse, K.-F., Muller, P.J., Ungerer, C.A. and Wefer, G. (1982) Calcium carbonate hexahydrate from organic rich sediments of the Antarctic shelf: precursors of glendonites. Science, 216, 11281131.CrossRefGoogle ScholarPubMed
Swainson, I.P and Hammond, R.P. (2001) Ikaite, CaCO3.6H2O. Cold comfort for glendonites as paleothermometers. American Mineralogist, 86, 15301533.CrossRefGoogle Scholar
Swainson, I.P., Dove, M.T. and Harris, M.J. (1998) The phase transitions in calcite and sodium nitrate, Physica B, 241-243, 397399.Google Scholar
Takeya, S., Nagaya, H., Matsuyama, T., Hondoh, T. and Lipenkov, V.Y. (2000) Lattice constants and thermal expansion coefficient of air clathrate hydrate in deep ice cores from Vostok, Antarctica. Journal of Physics and Chemistry B, 104, 668670.CrossRefGoogle Scholar