Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:46:09.184Z Has data issue: false hasContentIssue false

Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, São Paulo (Brazil)

Published online by Cambridge University Press:  05 July 2018

F. Bellatreccia
Affiliation:
Dipartimento di Scienze Geologiche, Universitá di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Universitá di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
E. Caprilli
Affiliation:
Dipartimento di Scienze Geologiche, Universitá di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
C. T. Williams
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
G. C. Parodi
Affiliation:
Museum National d'Histoire Naturelle, 61, rue Buffon, 75005 Paris, France

Abstract

A specimen of zirconolite, collected from the type locality of the mineral originally described as zirkelite at Jacupiranga, São Paulo, Brazil has been re-examined and its mineral chemistry more completely characterized. All crystals studied are metamict and display very fine lamellar oscillatory zoning (1–3 µm in width) superimposed on a sector zonation. Such zoning, observed in backscattered electron images, is primarily related to differences in the concentration of Th.

In comparison with other reported zirconolite samples from a variety of geological occurrences, Jacupiranga zirconolite has higher Ca, Th, (Nb + Ta) and lower Ti and REE, which is consistent with its occurrence in carbonatitic rocks. The compositional variation with respect to an ideal zirconolite is described by two main coupled substitutions:

Calzirtite, Ca2Zr5Ti2O16, although intergrown with zirconolite and with identical major components, shows much less compositional variability with only minor amounts of Nb and Ta substituting for Ti. Unlike zirconolite, the REE and actinide elements are not easily accommodated in the calzirtite structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayliss, P., Mazzi, F., Munno, R. and White, T.J., (1989) Mineral nomenclature: zirconolite. Mineral Mag., 53, 565–9.CrossRefGoogle Scholar
Bulakh, A.G., Anastasenko, G.F., and Dakhiya, L.M., (1967) Calzirtite from carbonatites of northern Siberia. Amer. Mineral., 52, 1880–5.Google Scholar
Callegari, A., Mazzi, F. and Ungaretti, L. (1997) The crystal structure of orthorhombic calzirtite from Val Malenco (Italy) Neues Jahrb. Mineral. Mon., 10, 467–80.CrossRefGoogle Scholar
Cheary, R.W., and Coelho, A.A., (1997) A site occupancy for zirconolite CaZrxTi3-xO7 . Phys. Chem. Min., 24, 447–54.CrossRefGoogle Scholar
Fauquier, D. (1959) Étude préliminaire d'un cristal de pyrochlore á croissance zonaire, provenant des pegmatites de Madagascar. Comptes Rendus du Congrès des Sociétés Savantes de Paris et des Départements. Section des Sciences, 84, 303–8.Google Scholar
Gieré, R. and Williams, C.T., (1992) REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy) Contrib. Mineral. Petrol., 112, 83100.CrossRefGoogle Scholar
Gieré, R., Williams, C.T., and Lumpkin, G.R., (1998) Chemical characteristics of natural zirconolite. Schweiz. Mineral. Petrogr. Mitt., 78, 433–59.Google Scholar
Henmi, C., Kusachi, I. and Henmi, K. (1995) Morimotoite, Ca3TiFe2+Si3O12, a new titanium garnet from Fuka, Okayama Prefecture, Japan. Mineral. Mag., 59, 115–20.CrossRefGoogle Scholar
Hogarth, D.D., Williams, C.T., and Jones, P. (in press) Primary zoning in pyrochlore group minerals from carbonatites. Mineral. Mag. Google Scholar
Hussak, E. (1895) Mineralogische notizen aus Brasilein. Tschermaks Mineral. Petrogr. Mitt., 14, 395414.Google Scholar
Hussak, E. and Prior, G.T., (1895) Lewisite and zirkelite, two new Brazilian minerals. Mineral. Mag., 11, 80–8.Google Scholar
Kesson, S.E., Sinclair, W.J., and Ringwood, A.E., (1983) Solid solution limits in SYNROC zirconolite. Nucl. Chem. Waste Manag., 4, 259–65.Google Scholar
Kogarko, L.N., Plant, D.A., Henderson, C.M.B., and Kjarsgaard, B.A., (1991) Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia. Contrib. Mineral. Petrol., 109, 124–9.CrossRefGoogle Scholar
Menezes, L.A.D. Jr and Martins, J.M., (1984) The Jacupiranga mine, São Paulo, Brazil. Mineral. Rec. 15, 261–70.Google Scholar
Palache, C., Berman, H. and Frondel, C. (1944) Dana's System of Mineralogy, 7th Edition, Volume 1, 740–2.Google Scholar
Prior, G.T., (1896) On the chemical composition of zirkelite. Mineral. Mag., 11, 180–3.Google Scholar
Pudovkina, Z.V., Dubakina, L.S., Levedeva, L.S., and Pyatenko, Yu.A. (1974) Study of Brazil zirkelite. Zap. Vses. Mineral. Obshch., 103, 368–72 (in Russian).Google Scholar
Ringwood, A.D., (1985) Disposal of high-level nuclear wastes: a geological perspective. Mineral. Mag., 49, 159–67.CrossRefGoogle Scholar
Rossell, H.J., (1982) Calzirtite – a fluorite-related superstructure. Acta Cryst., B38, 593–5.CrossRefGoogle Scholar
Shore, M. and Fowler, A.D., (1996) Oscillatory zoning in minerals: a common phenomenon. Canad. Mineral., 34, 1111–26.Google Scholar
Sinclair, W. and Ringwood, A.E., (1981) Alpha-recoil damage in natural zirconolite and perovskite. Geochem. J., 15, 229–43.CrossRefGoogle Scholar
Sinclair, W., Eggleton, R.A., and McLaughlin, G.M., (1986) The structure refinement of calzirtite from Jacupiranga, Brazil. Amer. Mineral., 71, 815–8.Google Scholar
Smith, K.L., and Lumpkin, G.R., (1993) Structural features of zirconolite, hollandite and perovskite, the major waste-bearing phases in Synroc. In Defects and Processes in the Solid State: Geoscience Applications. The McLaren Volume (Bolan, J.N. and Fitz Gerald, J.D., Eds), Elsevier, Amsterdam, pp. 401–22.Google Scholar
van der Veen, A.H., (1965) Calzirtite and associated minerals from Tapira, Brazil. Mineral. Mag., 35, 544–7.Google Scholar
Wakita, H., Rey, P., Schmitt, R.A., (1971) Abundances of the 14 rare-earth-elements and 12 other trace elements in Apollo 12 samples: five igneous and breccia rocks and four soils. Proc. 2nd Lunar Sci. Conf. (Geochim Cosmochim. Acta, suppl. 2), 2(2), 1319–29.Google Scholar
White, T.J., (1984) The microstructure and microchemistry of synthetic zirconolite, zirkelite and related phases. Amer. Mineral., 69, 1156–72.Google Scholar
Williams, C.T., (1996) Analysis of rare earth minerals. In Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Jones, A.P., F. Wall and Williams, C.T., Eds), Mineralogical Society Series 7, Chapman & Hall, London, pp. 327–48.Google Scholar
Williams, C.T., and Gieré, R. (1988) Metasomatic zonation of REE in zirconolite from a marble skarn at the Bergell contact aureole (Switzerland/Italy). Schweiz. Mineral. Petrol. Mitt., 68, 133–40.Google Scholar
Williams, C.T., and Gieré, R. (1996) Zirconolite: a review of localities worldwide, and a compilation of its chemical composition. Bull. Nat. Hist. Mus. Lond. (Geol.), 52, 1–24.Google Scholar
Williams, C.T., and Kogarko, L.N., (1996) New data on rare metal mineralisation in the Guli Massif carbonatites, Arctic Siberia. Geochemistry Int., 34, 433–40.Google Scholar
Williams, C.T., and Platt, R.G., (1993) Zirconolite-(Nd) and associated minerals from the Schryburt Lake carbonatite, Canada. Mineralogical Society Spring Meeting 1993: Rare Earth Minerals: Chemistry, Origin and Ore Deposits, Extended Abstracts, pp. 157–8.Google Scholar
Zdorik, T.B., Sidorenko, G.A., and Bykova, A.V., (1961) A new titanozirconate of calcium – calzirtite. Dokl. Akad. Nauk SSSR, 137, 681–4.Google Scholar