Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:04:56.907Z Has data issue: false hasContentIssue false

The crystal structure of Ni-rich gordaite–thérèsemagnanite from Cap Garonne, France

Published online by Cambridge University Press:  14 March 2019

Stuart J. Mills*
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
Owen P. Missen
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia School of Earth, Atmosphere and Environment, Monash University, Clayton 3800, Victoria, Australia
Georges Favreau
Affiliation:
421 Avenue Jean Monnet, Aix-en-Provence, 13090, France
*
*Author for correspondence: Stuart J. Mills, Email: smills@museum.vic.gov.au

Abstract

The crystal structure of Ni-rich gordaite–thérèsemagnanite has been determined from a sample collected at pillar 80 in the North mine, Cap Garonne, Var, France. The structure was refined to R1 = 0.0693 for 935 reflections with I > 2σ(I). The mineral is isostructural with gordaite, forming a layered structure with an extensive hydrogen-bonding network. The possible polytypic relationship between gordaite, thérèsemagnanite and guarinoite is also discussed. The guarinoite formula (Zn,Co,Ni)6(SO4)(OH,Cl)10·5H2O is also likely to be incorrect and is more likely to be Na(Zn,Co)4(SO4)(OH)6Cl·5–6H2O, meaning that guarinoite is equivalent to Co-rich gordaite-2H and would not be a distinct mineral species.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1997) The crystal structure of gordaite NaZn4(SO4)(OH)6Cl·6H2O. Zeitschrift für Kristallographie, 212, 704707.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Bindi, L., Christy, A.G., Mills, S.J., Ciriotti, M.E. and Bittarello, E. (2015) New compositional and structural data validate the status of jamborite. The Canadian Mineralogist, 53, 791802.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. Oxford University Press, UK.Google Scholar
Bruker, (2001) SADABS and XPREP. Bruker AXS Inc., Madison, WI, USA.Google Scholar
Favreau, G. and Galea-Clolus, V. (2014) Cap Garonne. Association Française de Microminéralogie, France, 320 pp.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Graham, D.J. and Midgley, N.G. (2000) Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surface Processes and Landforms, 25, 14731477.Google Scholar
Hawthorne, F.C., Kimata, M. and Eby, R.K. (1993) The crystal structure of spangolite, a complex copper sulfate sheet mineral. American Mineralogist, 78, 649652.Google Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132.Google Scholar
Kasatkin, A.V., Plášil, J., Škoda, R., Belakovskiy, D.I., Marty, J., Meisser, N. and Pekov, I.V. (2018) Redefinition of thérèsemagnanite, NaCo4(SO4)(OH)6Cl·6H2O: new data and relationship to ‘cobaltogordaite’. Mineralogical Magazine, 82, 159170.Google Scholar
Kösters, J., Galéa-Clolus, V., Clolus, P., Heying, B. and Pöttgen, R. (2019) Orthorhombic sulfur from Cap Garonne, Mine du Pradet. Zeitschrift für Naturforschung B, 74, 58.Google Scholar
Mills, S.J., Christy, A.G., Colombo, F. and Price, J.R. (2015) The crystal structure of cyanotrichite. Mineralogical Magazine, 79, 321335.Google Scholar
Mills, S.J., Christy, A.G., Génin, J.-M., Kameda, T. and Colombo, F. (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.Google Scholar
Mills, S.J., Christy, A.G., Schnyder, C., Favreau, G. and Price, J.R. (2014) The crystal structure of camerolaite and structural variation in the cyanotrichite family of merotypes. Mineralogical Magazine, 78, 15271552.Google Scholar
Mills, S.J., Christy, A.G., Favreau, G. and Galea-Clolus, V. (2017) Multidimensional structural variation in the cyanotrichite family of merotypes: camerolaite-3b-F-1. Acta Crystallographica, B73, 950955.Google Scholar
Mills, S.J., Christy, A.G. and Favreau, G. (2018) The crystal structure of ceruleite, CuAl4[AsO4]2(OH)8(H2O)4, from Cap Garonne, France. Mineralogical Magazine, 82, 181187.Google Scholar
Plášil, J., Petříček, V., Mills, S.J., Favreau, G. and Galea-Clolus, V. (2018) Zippeite from Cap Garonne, France: an example of reticular twinning. Zeitschrift für Kristallographie – Crystalline Materials, 233, 861865.Google Scholar
Sarp, H. (1993) Guarinoite (Zn,Co,Ni)6(SO4)(OH,Cl)10·5H2O et thérèsemagnanite (Co,Zn,Ni)6(SO4)(OH,Cl)10·8H2O, deux nouveaux minéraux de la mine de Cap Garonne, Var, France. Archives de Science Genève, 46, 3744.Google Scholar
Sarp, H. (1996) Mahnertite, (Na,Ca)Cu(AsO4)4Cl·5H2O, a new mineral from the Cap Garonne Mine, Var France. Archives de Science Genève, 49, 119124Google Scholar
Sarp, H. and Sanz-Gysler, J. (1997) Pushcharovskite, Cu(AsO3)(OH)·H2O, a new mineral from Cap Garonne (Var, France). Archives de Science Genève, 50, 177186.Google Scholar
Sarp, H. and Perroud, P. (1990) La geminite, Cu2As2O7·3H2O, un nouveau minéral de la mine de Cap Garonne, Var, France. Schweizerische Mineralogische und Petrographische Mitteilungen, 70, 309314.Google Scholar
Sheldrick, G.M. (2015 a) SHELXT – integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015 b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium–oxygen complexes. Inorganic Chemistry, 38, 39263930.Google Scholar
Zhu, L., Seff, K., Witzke, T. and Nasdala, L. (1997) Crystal structure of Zn4Na(OH)6SO4Cl·6H2O, Journal of Chemical Crystallography, 27, 325329.Google Scholar
Supplementary material: File

Mills et al. supplementary material

Mills et al. supplementary material 1

Download Mills et al. supplementary material(File)
File 97.5 KB