Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:18:38.379Z Has data issue: false hasContentIssue false

Crystal chemistry and origin of REE-bearing mukhinite from carbonate veins of the Svetlinsky gold deposit, South Urals, Russia

Published online by Cambridge University Press:  12 May 2022

Victor G. Korinevsky
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology of the Uralian Branch of the Russian Academy of Sciences, Miass, Chelyabinsk oblast 456317, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991, Russia
Sergey M. Aksenov*
Affiliation:
Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre, Russian Academy of Sciences, Apatity 184209, Russia Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184209, Russia
Evgeniy V. Korinevsky
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology of the Uralian Branch of the Russian Academy of Sciences, Miass, Chelyabinsk oblast 456317, Russia
Vasiliy A. Kotlyarov
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology of the Uralian Branch of the Russian Academy of Sciences, Miass, Chelyabinsk oblast 456317, Russia
Dmitry А. Zamyatin
Affiliation:
Institute of Geology and Geochemistry of the Uralian Branch of the Russian Academy of Sciences, Ekaterinburg 620016, Russia
Anastasiya D. Ryanskaya
Affiliation:
Institute of Geology and Geochemistry of the Uralian Branch of the Russian Academy of Sciences, Ekaterinburg 620016, Russia
Sergey V. Kolisnichenko
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology of the Uralian Branch of the Russian Academy of Sciences, Miass, Chelyabinsk oblast 456317, Russia
Svetlana M. Lebedeva
Affiliation:
South Urals Federal Research Center of Mineralogy and Geoecology of the Uralian Branch of the Russian Academy of Sciences, Miass, Chelyabinsk oblast 456317, Russia
Vera N. Ermolaeva
Affiliation:
Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia
*
*Author for correspondence: Sergey M. Aksenov, Email: aks.crys@gmail.com

Abstract

A rare earth element (REE)-, Cr- and Mg-bearing variety of the vanadium epidote-group mineral mukhinite occurs in a calcite–dolomite carbonatite dyke cutting metamorphosed volcano-sedimentary rocks exposed in the walls of the quarry of the Svetlinsky gold deposit, South Urals. This mineral was found in a paragene assemblage including native sulphur, phlogopite and fluorophlogopite, together with accessory pyrite, other sulfides and sulfosalts, gold, Cr- and V-bearing muscovite, margarite, Cr- and V-bearing dravite, fluoro-tremolite, actinolite, fluoro-pargasite, anhydrite, apatite, uranium hydroxides, V-rich titanite, V- and Nb-rich rutile, spinel and corundum. The contents of ΣREE2O3 and V2O3 in mukhinite vary in the ranges of 4.01–9.69 and 5.34–7.46 wt.%, respectively. A Raman spectrum of REE-rich mukhinite is provided. The main schemes of isomorphic substitutions in mukhinite are ΣREE + Mg ↔ Ca + Al and V+Cr ↔ Al. The crystal structure of REE-rich mukhinite has been studied by single-crystal X-ray diffraction analysis. The mineral is monoclinic, with the space group P21/m, and unit-cell parameters are: a = 8.8972(11) Å, b = 5.6221(6) Å, c = 10.1519(12) Å, β = 115.169° and V = 459.60(11) Å3. The crystal structure of REE-rich mukhinite is similar to that of its synthetic analogue; the refined crystal-chemical formula of the sample studied is (Z = 2): {A1CaA2(Ca0.8REE0.2)}{M1(Al0.95Cr0.05)M2AlM3[(V,Cr)3+0.40Al0.35Mg0.25]}(Si2O7)(SiO4)O(OH).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

Deceased

Associate Editor: Mihoko Hoshino

References

Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.CrossRefGoogle Scholar
Bačík, P. and Uher, P. (2010) Dissakisite-(La), mukhinite, and clinozoisite: (V,Cr,REE)-rich members of the epidote group in amphibole-pyrite-pyrrhotite matabasic rocks from Pezinok, Rybníček mine, Western Carpathians, Slovakia. The Canadian Mineralogist, 48, 523536.CrossRefGoogle Scholar
Bačík, P., Uher, P., Kozáková, P., Števko, M., Ozdín, D. and Vaculovič, T. (2018) Vanadian and chromian garnet- and epidote-supergroup minerals in metamorphosed Paleozoic black shales from Čierna Lehota, Strážovské vrchy Mts., Slovakia: crystal chemistry and evolution. Mineralogical Magazine, 82, 889911.CrossRefGoogle Scholar
Brandenburg, K. and Putz, H. (2005) DIAMOND, Version 3 . Crystal Impact GbR. Bonn, Germany.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (2006) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK, 278 pp.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species. Springer Geochemistry/Mineralogy, Springer Netherlands, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals; terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Ivanov, K.S. (2011) About of the nature of carbonatites of the Urals. Lithosphere, 1, 2033.Google Scholar
Karpov, S.V., Voloshin, A.V., Savchenko, E.E. and Selivanova, E.A. (2013) Vanadium minerals in ores of Pyrrotite gorge (Prikhibinie, Kola peninsula). Proceedings of the Russian Mineralogical Society, 142, 8399.Google Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Škoda, R., Polekhovsky, Y.S., Agakhanov, A.A., Belakovskiy, D.I., Kuznetsov, A.M., Britvin, S.N. and Pushcharovsky, D.Y. (2020a) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part I. New gatelite-group minerals ferriperbøeite-(La), (CaLa3)(Fe3+Al2Fe2+)[Si2O7][SiO4]3 O(OH)2 and perbøeite-(La), (CaLa3)(Al3Fe2+)[Si2O7][SiO4]. Mineralogical Magazine, 84, 593607.CrossRefGoogle Scholar
Kasatkin, A.V., Zubkova, N.V., Pekov, I.V., Chukanov, N.V., Ksenofontov, D.A., Agakhanov, A.A., Belakovskiy, D.I., Polekhovsky, Y.S., Kuznetsov, A.M., Britvin, S.N., Pushcharovsky, D.Y. and Nestola, F. (2020b) The mineralogy of the historical Mochalin Log REE deposit, South Urals, Russia. Part II. Radekškodaite-(La), (CaLa5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3 and radekškodaite-(Ce), (CaCe5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3, two new minerals. Mineralogical Magazine, 84, 839853.CrossRefGoogle Scholar
Kolisnichenko, S.V. and Popov, V.A. (2008) “Russian Brazil” in the South Urals. Minerals of the valleys of Sanarka, Kamenka and Kabanka rivers. Encyclopaedia of Urals stone. Sanarka, Chelyabinsk, Russia, 528 pp.Google Scholar
Kolisnichenko, S.V., Popov, V.A., Epanchintsev, S.G. and Kuznetsov, A.M. (2014) All minerals of the South Urals. Minerals of the Chelyabinsk district. Encyclopaedia of Urals stone. Sanarka, Chelyabinsk, Russia, 624 pp.Google Scholar
Kolitsch, U., Mills, S.J., Miyawaki, R. and Blass, G. (2012) Ferriallanite-(La), a new member of the epidote supergroup from the Eifel, Germany. European Journal of Mineralogy, 24, 741747.CrossRefGoogle Scholar
Konovalenko, S.I., Ananyev, S.A. and Garmaeva, S.S. (2012) Rare and new minerals of the Tashelga–Maizaskaya zone of Gornaya Shoriya, their peculiarities and nature. Journal of Siberian Federal University. Engineering and Technologies, 3, 301310.Google Scholar
Korinevsky, V.G. and Korinevsky, E.V. (2020) Isotopic evidences of magmatic nature of the dolomite-calcite bodies of the Ilmeny Mountains and the Plastovsky district of the South Urals. Vestnik of Geosciences, 11, 319.CrossRefGoogle Scholar
Korinevsky, V.G., Kotlyarov, V.A. and Kolisnichenko, S. V. (2019) New findings of rare Ni, Zn, Cr, Cu and V sulphides in carbonatites of South Urals. Vestnik of Institute of Geology of Komi Science Center of Ural Branch RAS, 9, 1722.CrossRefGoogle Scholar
Krasnobaev, A.A., Pushkarev, E. V., Busharina, S. V. and Gottman, I.A. (2013) Zirconology of clinopyroxenite of the Shigir Mountains (Ufalei Complex, Southern Urals). Doklady Earth Sciences, 450, 647651.Google Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: The RRUFF project. Pp. 1–30 in: Highlights in Mineralogical Crystallography. De Gruyter, Germany.Google Scholar
Levin, V.Y., Ronenson, B.M. and Levina, I.A. (1978) Carbonatites of the alkaline province of the Ilmeny-Vishnevogorsky Mountains in the Urals. Doklady Akademii Nauk SSSR, 240, 930933.Google Scholar
Nagashima, M., Nishio-Hamane, D., Tomita, N., Minakawa, T. and Inaba, S. (2015) Ferriakasakaite-(La) and ferriandrosite-(La): new epidote-supergroup minerals from Ise, Mie Prefecture, Japan. Mineralogical Magazine, 79, 735753.CrossRefGoogle Scholar
Nagashima, M., Nishio-Hamane, D., Nakano, N. and Kawasaki, T. (2019) Synthesis and crystal chemistry of mukhinite, V-analogue of clinozoisite on the join Ca2Al3Si3O12(OH)–Ca2Al2VSi3O12(OH). Physics and Chemistry of Minerals, 46, 6376.CrossRefGoogle Scholar
Oxford Diffraction (2009) CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, UK.Google Scholar
Petricek, V., Dusek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.CrossRefGoogle Scholar
Prince, E. (editor) (2004) International Tables for Crystallography, Volume C, 3rd Edition, Mathematical, Physical and Chemical Tables. Wiley, Chichester, UK.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Shepel, A.B. and Karpenko, M.V. (1965) Mukhinite, a new vanadium species of epidote. Doklady Akademii Nauk SSSR, 185, 13421345.Google Scholar
Shumilova, T.G., Kovalchuk, N.S., Mingalev, A.N. and Divaev, F.K. (2012) Isotopic composition of carbon and oxygen carbonates of carbonatites of the Kos'yu massif (Middle Timan). Vestnik of Institute of Geology of Komi Science Center of Ural Branch RAS, 4, 913.Google Scholar
Tomilina, A.V., Kisin, A.Y., Sustavov, S.G. and Rostova, A.V. (2016) Mukhinite – the first find at the Urals. Proceedings of the Russian Mineralogical Society, 145, 5563.Google Scholar
Uher, P., Kováčik, M., Kubiš, M., Shtukenberg, A. and Ozdín, D. (2008) Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. American Mineralogist, 93, 6373.CrossRefGoogle Scholar
Varlamov, D.A., Ermolaeva, V.N., Chukanov, N. V., Jančev, S., Vigasina, M.F. and Plechov, P.Y. (2019) New Data on Epidote-Supergroup Minerals: Unusual Chemical Compositions, Typochemistry, and Raman Spectroscopy. Geology of Ore Deposits, 61, 827842.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320, https://doi.org/10.1180/mgm.2021.43CrossRefGoogle Scholar
Supplementary material: File

Korinevsky et al. supplementary material

Tables S1-S2

Download Korinevsky et al. supplementary material(File)
File 60.4 KB