Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T14:54:05.205Z Has data issue: false hasContentIssue false

Bowlesite, PtSnS, a new platinum group mineral (PGM) from the Merensky Reef of the Bushveld Complex, South Africa

Published online by Cambridge University Press:  29 April 2020

Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Praha 5, Czech Republic
Federica Zaccarini
Affiliation:
Department of Applied Geological Sciences and Geophysics, University of Leoben, Peter Tunner Str. 5, A-8700Leoben, Austria
Giorgio Garuti
Affiliation:
Department of Applied Geological Sciences and Geophysics, University of Leoben, Peter Tunner Str. 5, A-8700Leoben, Austria
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Praha 5, Czech Republic
Daniela Mauro
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, I-56126Pisa, Italy
Chris J. Stanley
Affiliation:
Department of Earth Sciences, Natural History Museum, LondonSW7 5BD, United Kingdom
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, I-56126Pisa, Italy
*
*Author for correspondence: Anna Vymazalová, Email: anna.vymazalova@geology.cz

Abstract

Bowlesite is a new mineral discovered in the Merensky Reef of the Rustenburg Platinum Mine, Bushveld complex, South Africa. Bowlesite forms tiny grains (maximum dimension 20 μm). It is associated with sulfides including chalcopyrite, pyrrhotite and pentlandite, in contact with silicates including plagioclase, pyroxene- and minor serpentine-subgroup and amphibole-supergroup minerals. Bowlesite is brittle and has a metallic lustre. In plane-polarised light, bowlesite has a light bluish grey colour. It shows weak bireflectance, no pleochroism and has weak anisotropism. Internal reflections were not observed. Reflectance values of bowlesite in air (R1, R2 in %) are: 50.3–51.4 at 470 nm, 48.5–48.9 at 546 nm, 47.9–48.6 at 589 nm and 47.8–48.7 at 650 nm. Ten spot analyses of bowlesite give the average composition: Pt 56.85, Pd 0.02, Sn 34.03 and S 9.15, total 100.05 wt.%, corresponding to the empirical formula (Pt1.001Pd0.001)Σ1.002Sn0.997S1.001, based on 3 atoms per formula unit. The simplified formula is PtSnS. Due to the small size of bowlesite, the crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic PtSnS. The calculated density is 10.06 g⋅cm–3. The mineral is orthorhombic, space group: Pca21 (#29) with a = 6.11511(10), b = 6.12383(10), c = 6.09667(11) Å, V = 228.31(1) Å3 and Z = 4. Bowlesite is isotypic with cobaltite, CoAsS. The origin of bowlesite is probably related to low-T exsolution of Pt–Sn phases from high-T sulfides crystallised from the sulfide melt. The mineral honours Dr. John Bowles (Manchester University, UK) for his contributions to ore mineralogy and mineral deposits related to mafic–ultramafic rocks.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian T. Graham

References

Bachhuber, F., Krach, A., Furtner, A., Söhnel, T., Peter, P., Rothballer, J. and Weihrich, R. (2015) Phase stabilities of pyrite-related MTCh compounds (M = Ni, Pd, Pt; T = Si, Ge, Sn, Pb; Ch = S, Se, Te): A systematic DFT study. Journal of Solid State Chemistry, 226, 2935.CrossRefGoogle Scholar
Ballhaus, C.G. and Stumpfl, E.F. (1986) Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions. Contributions to Mineralogy and Petrology, 94, 193204.CrossRefGoogle Scholar
Bannister, F.A. and Hey, M.H. (1932) Determination of minerals in platinum concentrates from the Transvaal by X-ray methods. Mineralogical Magazine, 28, 188206.CrossRefGoogle Scholar
Barkov, A.Y., Martin, R.F., Kaukonen, R.J. and Alapieti, T.T. (2001) The occurrence of Pb–Cl–(OH) and Pt–Sn–S compounds in the Merensky reef, Bushveld layered complex, South Africa. The Canadian Mineralogist, 39, 13971403.CrossRefGoogle Scholar
Barnes, S.J. and Maier, W.D. (2002) Platinum group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex. Journal of Petrology, 43, 103128.CrossRefGoogle Scholar
Bayliss, P. (1989) Crystal chemistry and crystallography of some minerals within the pyrite group. American Mineralogist, 74, 11681176.Google Scholar
Bruker, AXS (2014) Topas 5, Computing Program. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
Brynard, H.J., de Villiers, J.P.R. and Viljoen, E.A. (1976) A mineralogical investigation of the Merensky Reef at the Western planium mine, near Marikana, South Africa. Economic Geology, 71, 12991307.CrossRefGoogle Scholar
Cawthorn, R.G. (2010) The platinum group element deposits of the Bushveld Complex in South Africa. Platinum Metals Review, 54, 205215.CrossRefGoogle Scholar
Cousins, C.A. and Kinloch, E.D. (1976) Some observations on textures and inclusions in alluvial platinoids. Economic Geology, 71, 13771398.CrossRefGoogle Scholar
Groenvold, F., Haraldsen, H. and Kjekshus, A. (1960) On the sulfides, selenides and tellurides of platinum. Acta Chemica Scandinavica, 14, 18791893CrossRefGoogle Scholar
Kingston, G.A. (1966) The occurrence of platinoid bismuthotellurides in the Merensky Reef at Rustenburg Platinum Mine in the Western Bushveld. Mineralogical Magazine, 35, 815834CrossRefGoogle Scholar
Kinloch, E.D. (1982) Regional trends in the platinum-group mineralogy of the Critical Zone of the Bushveld Complex, South Africa. Economic Geology, 77, 13281347.CrossRefGoogle Scholar
Kovalenker, V.A., Begizov, V.D., Evstigneeva, T.L., Troneva, N.V. and Ryabikin, V.A. (1979) Maslovite, PtBiTe: a new mineral from the Oktyabr copper-nickel deposit. Geologia Rudnych Mestorozhdenii, 21, 94104 [in Russian].Google Scholar
Mernagh, T.P. and Trudu, A.G. (1993) A laser Raman microprobe study of some geologically important sulphide minerals. Chemical Geology, 103, 113127.CrossRefGoogle Scholar
Mihálik, P., Hiemstra, S.A. and De Villiers, I.P.R. (1975) Rustenburgite and atokite, two new platinum-group minerals from the Merensky Reef, Bushveld igneous complex. The Canadian Mineralogist, 13, 146150.Google Scholar
Naldrett, A.J. (2004) Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer, Heidelberg, 727 pp.CrossRefGoogle Scholar
Nicholson, D.M. and Mathez, E.A. (1991) Petrogenesis of the Merensky Reef in the Rustenburg section of the Bushveld Complex. Contributions to Mineralogy and Petrology, 107, 293309.CrossRefGoogle Scholar
Oberthür, T., Weiser, T.W., Gast, L. and Kojonen, K. (2003) Geochemistry and mineralogy of platinum-group elements at Hartley Platinum Mine, Zimbabwe. Mineralium Deposita, 38, 327343.CrossRefGoogle Scholar
Oberthür, T., Melcher, F., Gast, L, Wöhrl, C. and Lodziak, J (2004) Detrital platinum-group minerals in rivers draining the Eastern Bushveld Complex, South Africa. The Canadian Mineralogist, 42, 563582.CrossRefGoogle Scholar
Oberthür, T., Malte, J., Rudashevsky, N., de Meyer, E. and Gutter, P. (2016) Platinum-group minerals in the LG and MG chromitites of the eastern Bushveld Complex, South Africa. Mineralium Deposita, 51, 7187.CrossRefGoogle Scholar
Osbahr, I. (2012) Platinum-group element distribution in base-metal sulfides of the Merensky Reef and UG2 from the eastern and western Bushveld Complex, South Africa. PhD thesis, Friedrich-Alexander Universität Erlangen-Nürnberg, GeoZentrum Nordbayern, Germany, pp 172.Google Scholar
Osbahr, I., Klemd, R., Oberthür, T., Brätz, H. and Schouwstra, R. (2013) Platinum-group element distribution in base-metal sulfides of the Merensky Reef from the eastern and western Bushveld Complex, South Africa. Mineralium Deposita, 48, 211232.CrossRefGoogle Scholar
Paar, H.W., Topa, D., Makovicky, E. and Culetto, F.J. (2005) Milotaite, (PdSbSe), a new palladium mineral species from Předbořice, Czech Republic. The Canadian Mineralogist, 43, 689694.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Vermaak, C.F. and Hendriks, L.P. (1976) A review of the mineralogy of the Merensky Reef, with special reference to new data on the precious metal mineralogy. Economic Geology, 71, 12441269.CrossRefGoogle Scholar
Vermaak, C.F. and Von Gruenewaldt, G. (1981) Third international platinum symposium, excursion guidebook. Geological Society of South Africa and Society of Economic Geology, 162, ISBN 0 7988 2117, 5.Google Scholar
Vymazalová, A., Zaccarini, F., Garuti, G., Laufek, F., Mauro, D., Stanley, C.J. and Biagioni, C. (2019) Bowlesite, IMA 2019-079. CNMNC Newsletter No. 52; Mineralogical Magazine, 83, https://doi.org/10.1180/mgm.2019.73Google Scholar
Wagner, P.A. (1929) The Platinum Deposits and mines of South Africa. Oliver and Boyd, Edinburgh, pp. 326.Google Scholar
Weihrich, R., Kurowski, D., Stückl, A.C., Matar, S.F., Rau, F. and Bernert, T. (2004) On the ordering in new low gap semiconductors: PtSnS, PtSnSe, PtSnTe. Experimental and DFT studies. Journal of Solid State Chemistry, 177, 25912599.CrossRefGoogle Scholar
Supplementary material: File

Vymazalová et al. supplementary material

Vymazalová et al. supplementary material

Download Vymazalová et al. supplementary material(File)
File 23.3 KB