Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:25:18.786Z Has data issue: false hasContentIssue false

Analysis of materials and energy flows of different lithium iontraction batteries

Published online by Cambridge University Press:  22 March 2013

B. Simon
Affiliation:
Helmholtz Institute Ulm for Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89081 Ulm, Germany. e-mail: balint.simon@kit.edu KIT Institute for Technology Assessment and System Analysis, 76021 Karlsruhe, Germany
M. Weil
Affiliation:
Helmholtz Institute Ulm for Electrochemical Energy Storage, Albert-Einstein-Allee 11, 89081 Ulm, Germany. e-mail: balint.simon@kit.edu KIT Institute for Technology Assessment and System Analysis, 76021 Karlsruhe, Germany
Get access

Abstract

The increasing proportion of renewable resources in electricity mixes, thedecentralization of energy supply and the growing use of electric vehicles demands thechallenging development of reliable, cost effective and flexible energy storagetechnologies. One option are electrochemical energy storage systems with high specificpower and high specific energy density. One of the most promising electrochemical energystorage systems is the lithium-ion batteries (LIB) which are customized regarding size,weight, specific energy and specific capacity what makes batteries ready for operationunder different conditions such as emerging electric power systems, grid support orelectric mobility [1]. Even though the lithium-Iontechnology for traction batteries is not yet widely applied, experiments and first useexperiences show that it is a promising electric energy storage system for electricmobility. However, the environmental impacts of battery production, use and recycling arenot well understood. To gain a better understanding about the ecological properties ofLIBs material and energy flow analysis (MEFA) is conducted. The MEFA defines the possiblesources and consumers of relevant materials, substances, pollutants and energy flows[2, 3]. Thepresented study analyses the consumed materials and energy as well as the emittedsubstances and waste heat of different LIBs. The main focus of the MEFA is on theproduction phase and includes active and passive components and material such asmetal-salts, electrode materials, other functional metals (e.g. current collectors,casing, etc.), plastics (e.g. separator) and electrolytes [4--7] and on energy consumption aswell.

Type
Research Article
Copyright
© EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dunn, B., Kamath, H., Tarascon, J.-M., Science 334 (2011) 928
Hendriks, C., Obernosterer, R., Müller, D., Kytzia, S., Baccini, P., Brunner, P.H., Local Env. 5 (2000) 311-328
J. Gregory, Material Flow Analysis, Massachusetts Institute of Technology Department of Materials Science & Engineering, Cambridge, USA, 2006
L. Gaines, R. Cuenca, Costs of Lithium-Ion Batteries for Vehicles, Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, Chicago, USA, 2000
R. Hischier, M. Classen, M. Lehmann, W. Scharnhorst, Life Cycle Inventories of Electric and Electronic Equipments: Production, Use and Disposal, Swiss Centre of Life Cycle Inventories, 2007
Majeau-Bettez, G., Hawkins, T.R., Strømman, A.H., Environ. Sci. Technol. 45 (2011) 4548-4554
Notter, D.A., Gauch, M., Widmer, R., Wager, P., Stamp, A., Zah, Ra., Althaus, H.-J., Environ. Sci. Technol. 44 (2010) 6550-6556
United Nations, World Urbanization Prospects The 2011 Revision, UN, Department of Economic and Social Affairs Population Division, 2012
M. Baumann, B. Simon, H. Dura, M. Weil, 2nd IEEE ENERGYCON Conference & Exhibition, 2012/Sustainable Transportation Systems Symposium, 2012, pp. 1177-1182
NPE, Zweiter Bericht Der Nationalen Plattform Elektromobilität, Gemeinsame Geschäftsstelle Elektromobilität der Bundesregierung, 2012
ISO 14044, Environmental Management – Life cycle Assessment – Requirements and Guidelines, 2006
Chang, T.C., You, S.J., Yu, B.S., Yao, K.F., J. Hazardous Mater. 163 (2009) 910-915
GreenDelta, The openLCA project – http://www.openlca.org/index.html, accessed: 26. 04.2012
Zackrisson, M., Avellán, L., Orlenius, J., J. Clean. Prod. 18 (2010) 1519-1529
Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B., J. Power Sources 177 (2008) 512-527
Dewulf, J., Van der Vorst, G., Denturck, K., Van Langenhove, H., Ghyoot, W., Tytgat, J., Vandeputte, K., Resources, Conserv. Recycling 54 (2010) 229-234 Google Scholar
Daniel, C., Metals and Materials Society 60 (2008) 43
L. Gaines, P. Nelson, Lithium-Ion Batteries: Possible Materials Issues, Argonne National Laboratory, Chicago, USA, 2009
J. Matheys, W. Van Autenboer, SUBAT: SUSTAINABLE BATTERIES Work Package 5: OverallAssessment Final Public Report, Vrije Universiteit Brussel, Brussels, 2005
Shukla, A.K., Prem Kumar, T., Curr. Sci. 94 (2008) 314-331
Jugović, D., Uskoković, D., J. Power Sources 190 (2009) 538-544
Ngala, J.K., Chernova, N.A., Ma, M., Mamak, M., Zavalij, P.Y., Whittingham, M.S., J. Mater. Chem. 14 (2004) 214-220
M. Classen, H.-J. Althaus, Blaser, G. Doka, N. Jungbluth, Tuchschmid, Life Cycle Inventories of Metals, Swiss Centre of Life Cycle Inventories, 2009
H. Nemoto, T. Kurokawa, K. Kitoh, Lithium Secondary Battery, U.S. Patent 6344292, 2002
W. Choate, U.S. Energy, Requirements for Aluminum Production, BCS Inc., Laurel, USA, 2007
OECD, OECD Global Forum on Environment Focusing on Sustainable Materials Management, Material Case Study 2: Aluminium, Mechelen, Belgium, 2010
Sloop, S.E., Pugh, J.K., Wang, S., Kerr, J.B., Kinoshita, K., Electrochem. Solid-State Lett. 4 (2001) A42-44
C. Bauer, Ökobilanz von Lithium-Ionen Batterien, Paul Scherrer Institut, Labor für Energiesystem-Analysen (LEA), Villigen, Switzerland, 2010
Swain, B., Jeong, J., Lee, J., Lee, G.-H., Sohn, J.-S., J. Power Sources 167 (2007) 536-544
H.-W. Praas, Cell Production and Safety of High Capacity Batteries for New Communication Devices – First Customer and Supplier Feedback, Battery University, Aschaffenburg, 2012
K. Kawase, I. Konishiike, T. Takada, M. Iwama, N. Morita, Y. Kato, US 2007/0231698 A1
M. Steinrötter, Carbon based anodes – a rare earth situation? Third German Electric Vehicle Congress, Bonn, Germany, 2011
Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H., Kim, Y.H., Hydrometallurgy 79 (2005) 172-181
Contestabile, M., Panero, S., Scrosati, B., J. Power Sources 92 (2001) 65-69