Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T00:04:32.381Z Has data issue: false hasContentIssue false

Simulation du préformage de renforts composites textiles3D

Published online by Cambridge University Press:  19 October 2010

Emmanuel de Luycker
Affiliation:
Laboratoire de Mécanique des Contacts et des Structures LaMCoS (UMR CNRS 5259), 18–20 rue des sciences, INSA-Lyon, 69621 Lyon, France
Philippe Boisse*
Affiliation:
Laboratoire de Mécanique des Contacts et des Structures LaMCoS (UMR CNRS 5259), 18–20 rue des sciences, INSA-Lyon, 69621 Lyon, France
Fabrice Morestin
Affiliation:
Laboratoire de Mécanique des Contacts et des Structures LaMCoS (UMR CNRS 5259), 18–20 rue des sciences, INSA-Lyon, 69621 Lyon, France
David Marsal
Affiliation:
Département Matériaux YQMM, Snecma Villaroche, Réau, rond point R. Ravaud, 77550 Moissy-Cramayel, France
Stéphane Otin
Affiliation:
Département Matériaux YQMM, Snecma Villaroche, Réau, rond point R. Ravaud, 77550 Moissy-Cramayel, France
*
aAuteur pour correspondance :Philippe.Boisse@insa-lyon.fr
Get access

Abstract

Ce travail s’inscrit dans le cadre de la simulation de la mise en forme de matériauxcomposites. Le cas traité ici est celui du préformage des interlocks. Il s’agit derenforts textiles 3D permettant d’éviter le délaminage rencontré avec des stratifiés. Unélément-fini 3D semi-discret permettant de modéliser la déformation d’une préformeinterlock complète est décrit. Chaque élément tridimensionnel contient des fibres quicontribuent à la rigidité de l’élément. Les paramètres matériaux sont identifiés à partird’essais mécaniques et la simulation est validée par comparaison avec l’expérience.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

R.S. Parnas, Liquid Composite Molding, Hanser Garner publications, 2000
S.G. Advani, Flow and rheology in polymeric composites manufacturing, Elsevier, Amsterdam, 1994
Saouab, A., Bréard, J., Lory, P., Gardarein, B., Bouquet, G., Injection simulations of thick composite parts manufactured by the RTM process, Compos. Sci. Tech. 61 (2001) 445451 CrossRefGoogle Scholar
Mouritz, A.P., Bannister, M.K., Falzon, P.J., Leong, K.H., Review of applications for advanced three-dimensional fibre textile composites, Composites Part A 30 (1999) 14451461 CrossRefGoogle Scholar
Peng, X., Cao, J., A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics, Composites Part A 36 (2005) 859874 CrossRefGoogle Scholar
Boisse, P., Zouari, B., Daniel, J.L., Importance of In-Plane Shear Rigidity in Finite Element Analyses of Woven Fabric Composite Preforming, Composites Part A 37 (2006) 22012212 CrossRefGoogle Scholar
Ten Thije, R.H.W., Akkerman, R., Huetink, J., Large deformation simulation of anisotropic material using an updated Lagrangian finite element method, Comput. Methods Appl. Mech. Eng. 196 (2007) 31413150 CrossRefGoogle Scholar
Hivet, G., Boisse, P., Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis, Finite Elem. Anal. Des. 42 (2005) 2549 CrossRefGoogle Scholar
E. De Luycker, Thèse de doctorat de l’INSA de Lyon, 2009
Hughes, T.J.R., Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis, Int. J. Numer. Methods Eng. 15 (1980) 18621867 CrossRefGoogle Scholar
M.A. Criesfield, Non linear Finite Element Analysis of Solids and Structure: Advanced Topics, John Wiley, Chichester, 1997, Vol. 2
T. Belytschko, K.L. Wing, B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley, Chichester, 2000
Oshmyan, V.G., Patlazhan, S.A., Remond, Y., Principles of Structural-Mechanical Modeling of Polymers and Composites, Polymer Science Ser. A 48 (2006) 10041013 CrossRefGoogle Scholar
Badel, P., Gauthier, S., Vidal-Sallé, E., Boisse, P., Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Composites : Part A 40 (2009) 9971007 CrossRefGoogle Scholar
Peric, D., On consistent stress rates in solid mechanics : Computational implications, Int. J. Num. Meth. Eng. 33 (1992) 799817 CrossRefGoogle Scholar
Boubakar, M.L., Boisse, P., Gelin, J.C., Numerical implementation of orthotropic plasticity for sheet metal forming analysis, J. Mater. Process. Technol. 65 (1997) 143152 CrossRefGoogle Scholar
Carvelli, V., Talierico, A., A micromechanical model for the analysis of unidirectional elastoplastic composites subjected to 3D stresses, Mech. Res. Commun. 26 (1999) 547553 CrossRefGoogle Scholar
Lomov, S.V. et al., Meso-FE modelling of textile composites: road map, data flow and algorithms, Compos. Sci. Tech. 67 (2007) 18701891 CrossRefGoogle Scholar
De Luycker, E., Morestin, F., Boisse, P., Marsal, D., Simulation of 3D interlock composite preforming, Compos. Struct. 88 (2009) 615623 CrossRefGoogle Scholar
Cao, J. et al., Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results, Composites Part A 39 (2008) 10371053 CrossRefGoogle Scholar
Schur, D.S., Zabaras, N., An inverse method for determining elastic material properties and a material interface, Int. J. Numer. Methods Eng. 33 (1992) 20392057 CrossRefGoogle Scholar
Dumont, F., Hivet, G., Rotinat, R., Launay, J., Boisse, P., Vacher, P., Identification des caractéristiques mécaniques de renforts tissés à partir de mesures de déformations par corrélation d’images, Mécaniques & Industries 4 (2003) 627635 CrossRefGoogle Scholar
Lomov, S.V., Boisse, P., De Luycker, E., Morestin, F., Vanclooster, K., Vandepitte, D., Verpoest, I., Willems, A., Full-field strain measurements in textile deformability studies, Composites: Part A 39 (2008) 12321244 CrossRefGoogle Scholar