Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:55:01.588Z Has data issue: false hasContentIssue false

Processing dynamic split Hopkinson three-point bending testwith normalized specimen of quasi-brittle material

Published online by Cambridge University Press:  02 January 2013

Jean-Luc Hanus*
Affiliation:
PRISME Laboratory, Loire Valley University, ENSI de Bourges, 88 boulevard Lahitolle, 18020 Bourges Cedex, France
Benoît Magnain
Affiliation:
PRISME Laboratory, Loire Valley University, ENSI de Bourges, 88 boulevard Lahitolle, 18020 Bourges Cedex, France
Bastien Durand
Affiliation:
PRISME Laboratory, Loire Valley University, ENSI Bourges, INERIS Parc Technologique Alata, 60550 Verneuil en Halatte, France
Javier Alanis-Rodriguez
Affiliation:
PRISME Laboratory, Loire Valley University, ENSI Bourges, INERIS Parc Technologique Alata, 60550 Verneuil en Halatte, France
Patrice Bailly
Affiliation:
PRISME Laboratory, Loire Valley University, ENSI de Bourges, 88 boulevard Lahitolle, 18020 Bourges Cedex, France
*
a Corresponding author:jean-luc.hanus@ensi-bourges.fr
Get access

Abstract

Evaluation of the dynamic properties of quasi-brittle materials is of the utmostimportance for assessing the vulnerability of structural components under dynamic loadingssuch as collision or explosion. To investigate the dynamic strength of (quasi)-brittlematerial, three-point bending tests are performed on a modified Split Hopkinson PressureBar. Such an apparatus is often used with pre-cracked specimen to determine the dynamicstress intensity factor of metallic materials. With quasi-brittle materials special carehas to be paid to the processing of the test since fracture can occur at very low strains.The specimen remains in an out-of equilibrium state and fracture occurs before the supportreactions appear as if it was a support-free impact test. A special non-equilibriumanalytical approach has been developed to process the tests. Finite-element simulationsare used to assess relevance of the proposed analysis for normalized short beams.Experimental results on brick and concrete samples showing a significant dynamic strengthincrease are presented.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L.J. Malvar, J.E Crawford, Dynamic increase factors for concrete, In 28th Department of defense explosives safety seminar, Orlando, FL, 1998
Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T., Siviour, C.R., Review of experimental techniques for high rate deformation and shock studies, Int. J. Impact Eng. 30 (2004) 725775 CrossRefGoogle Scholar
George, T., Gray III, Classic split Hopkinson bar testing, ASM Int. 8 (2000) 462476 Google Scholar
Tedesco, J.W., Ross, C.A., Kuennen, S.T., Experimental and numerical analysis of high strain rate splitting-tensile tests, ACI Mater. J. 90 (1993) 162169 Google Scholar
Erzar, B., Forquin, P., An experimental method to determine the tensile strength of concrete at high rates of strain, Exp. Mech. 50 (2010) 941955 CrossRefGoogle Scholar
Jiang, F., Vecchio, K.S., Hopkinson bar loaded fracture experimental technique : A critical review of dynamic fracture toughness tests, Appl. Mech. Rev. 62 (2009) 060802 CrossRefGoogle Scholar
Delvare, F., Hanus, J.L., Bailly, P., A non-equilibrium approach to processing Hopkinson bar bending test data : Application to quasi-brittle materials, Int. J. Impact Eng. 37 (2010) 11701179 CrossRefGoogle Scholar
NF EN 12390-1, Testing hardened concrete – Part 1 : Shape, dimensions and other requirements for specimens and moulds, AFNOR, 1999
NF EN 12390-5, Testing hardened concrete – Part 5 : Flexural strength of test specimen, Afnor, 2001
Yokoyama, T., Kishida, K., A novel impact three-point bend test method for determining dynamic fracture-initiation toughness, Exp. Mech. 29 (1989) 188194 CrossRefGoogle Scholar
G. Gary, J.R. Klepaczko, H. Zhao, Correction de dispersion pour l’analyse des petites déformations aux barres de Hopkinson, In Colloque C3, supplément au J. Phys. III, Vol. 1, 1991, pp. 403–410
Zhao, H., Gary, G., On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains, Int. J. Solids Struct. 33 (1996) 33633375 CrossRefGoogle Scholar
Mohr, D., Gary, G., Lundberg, B., Evaluation of stress-strain curve estimates in dynamic experiments, Int. J. Impact Eng. 37 (2010) 161169 CrossRefGoogle Scholar
V. Ditkine, A. Proudnikov, Calcul opérationnel, Editions MIR, Moscou, 1979
CASTEM 2000, Code de calcul pour l’analyse de structures par la méthode des éléments finis. Guide d’utilisation, Commissariat à l’Énergie Atomique, DEN/DM2S/SEMT/LM2S, Gif-sur-Yvette, France, 1998
W.L. Cowell, Dynamic properties of plain Portland cement concrete, Technical Report R447, Naval Civil Engineering Laboratory, Port Hueneme, CA, 1966
F.M. Mellinger, D.L. Birkimer, Measurement of stress and strain on cylindrical test specimens of rock and concrete under impact loading, Technical Report 4-46, U.S. Army Corps of Engineers, Ohio River Division Laboratories, Cincinnati, Ohio, 1966
D.L. Birkimer, Critical Normal Fracture Strain of Portland Cement Concrete, Ph.D. thesis, University of Cincinnati, 1968
J. Takeda, H. Tachikawa, Deformation and fracture of concrete subjected to dynamic load, In Mechanical Behavior of Materials, volume IV, Kyoto, 1971
M.K. McVay, Spall damage of concrete structures, Technical Report SL-88-22, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, 1988
T.H. Antoun, Constitutive/failure model for the static and dynamic behaviors of concrete incorporating effects of damage and anisotropy, Ph.D. thesis, University of Dayton, Ohio, 1991
R. John, T. Antoun, A.M. Rajendran, Effect of strain rate and size on tensile strength of concrete. In APS Topical Conference on Shock Compression of Condensed Matter, Williamsburg, VA, 1992, pp. 501–504
Ross, C.A., Thompson, P.Y., Tedesco, J.W., Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression, ACI Mater. J. 86 (1989) 475481 Google Scholar
Rossi, P., Toutlemonde, F., Effect of loading rate on the tensile behavior of concrete : Description of the physical mechanisms, Mater. Struct. 29 (1996) 116118 CrossRefGoogle Scholar
F. Toutlemonde, Résistance au choc des structures en béton – Du comportement du matériau au calcul des ouvrages, Ph.D. thesis, Laboratoire Central des Ponts et Chausseés, Paris, France, 1995
Klepaczko, J., Brara, A., An experimental method for dynamic tensile testing of concrete by spalling, Int. I. Impact Eng. 25 (2001) 387409 CrossRefGoogle Scholar
Wu, H., Zhang, Q., Huang, F., Jin, Q., Experimental and numerical investigation on the dynamic tensile strength of concrete, Int. J. Impact Eng. 32 (2005) 605617 CrossRefGoogle Scholar
Schuler, H., Mayrhofer, C., Thoma, K., Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates, Int. J. Impact Eng. 32 (2006) 16351650 CrossRefGoogle Scholar
Weerheijm, J., Van Doormaal, J.C.A.M., Tensile failure of concrete at high loading rates : New test data on strength and fracture energy from instrumented spalling tests, Int. J. Impact Eng. 34 (2007) 609626 CrossRefGoogle Scholar
UFC-340-02, Unified facilities criteria 3-340-02, structures to resist the effects of accidental explosions, US Department of Defense, Washington, DC, USA, 2008
Rossi, P., Influence of cracking in the presence of free-water on the mechanical behaviour of concrete, Magazine Concrete Res. 43 (1991) 5357 CrossRefGoogle Scholar
Hild, F., Denoual, C., Forquin, P., Brager, X., On the probabilistic-deterministic transition involved in a fragmentation process of brittle materials, Comput. Struct. 81 (2005) 12411253 CrossRefGoogle Scholar
Pierron, F., Sutton, M., Tiwari, V., Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar, Experim. Mech. 51 (2011) 537563 CrossRefGoogle Scholar