Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:32:11.781Z Has data issue: false hasContentIssue false

Micromechanics based modeling of the Callovo-Oxfordian argillite mechanical behavior

Published online by Cambridge University Press:  17 August 2007

Ariane Abou-Chakra Guéry
Affiliation:
Laboratory of Mechanics of Lille, UMR 8107, Cité scientifique, 59655 Villeneuve d'Ascq, France Agence Nationale pour la gestion des déchets radioactifs (ANDRA), 92296 Chatenay-Malabry, France
Fabrice Cormery
Affiliation:
Laboratory of Mechanics of Lille, UMR 8107, Cité scientifique, 59655 Villeneuve d'Ascq, France
Jian-Fu Shao
Affiliation:
Laboratory of Mechanics of Lille, UMR 8107, Cité scientifique, 59655 Villeneuve d'Ascq, France
Djimedo Kondo
Affiliation:
Laboratory of Mechanics of Lille, UMR 8107, Cité scientifique, 59655 Villeneuve d'Ascq, France
Get access

Abstract

The present study is devoted to the development and validation of a non-linear homogenizationapproach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modelled as an heterogeneous one composed of an elastoplastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the Hill-type incremental method [1]. The approach consists in formulating the macroscopic tangent operator of the material from the non-linearlocal behavior of its phases. Due to the matrix/inclusion morphology of the microstructure of the argillites, a Mori-Tanaka scheme is considered for the localization step. The developed model is first compared to Finite-Elements calculations and then validated and applied for the prediction of the macroscopic stress-strain responses of argillites.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hill, R., Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids 13 (1965) 89101 CrossRef
Chiarelli, A.-S., Shao, J.-F., Hoteit, N., Modeling of elastoplastic damage behavior of a claystone, Int. J. Plasticity 19 (2003) 2345 CrossRef
Conil, N., Djeran-Maigre, I., Cabrillac, R., Poroplastic da, K. Sumage model for claystones, Appl. Clay Sci. 26 (2004) 473487 CrossRef
Berveiller, M., Zaoui, A., An extension of the self-consistent scheme to plasticity flowing polycrystals, J. Mech. Phys. Solids 26 (1979) 325344 CrossRef
Ponte-Castañeda, P., Suquet, P., Nonlinear composites, Adv. Appl. Mech. 34 (1998) 171302 CrossRef
Tandon, G.-P., Weng, G.-J., A theory of particle-reinforced plasticity, J. Appl. Mech. Trans. ASME 55 (1988) 126135 CrossRef
Chaboche, J.-L., Kanouté, P., On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites, Int. J. Plasticity 21 (2005) 14091434 CrossRef
Doghri, I., Ouaar, A., Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms, Int. J. Solids Structures 40 (2003) 16811712 CrossRef
Molinari, A., Canova, G.-R., Ahzi, S., A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall. 35 (1987) 29832994 CrossRef
Masson, R., Bornert, M., Suquet, P., Zaoui, A., An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids 48 (2000) 12031227 CrossRef
R. Gasc, Couplages hydromécaniques dans les argilites de l'est et les siltites du Gard, Report ANDRA G3S B RP 0.G.3S., 99-002/A, 1999
Mori, T., Tanaka, K., Average stress in a matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. Mater. 42 (1973) 597629
Drucker, D.-C., Prager, W., Soil mechanics and plastic analysis or limit design, Quartely of Appl. Math. 10 (1952) 157175 CrossRef
Curnier, A., He, Q.-C., Zysset, P., Conewise linear elastic materials, J. Elasticity 37 (1995) 138 CrossRef
Welemane, H., Cormery, F., An alternative 3D model for damage induced anisotropy and unilateral effect in microcracked materials, J. Phys. 105 (2003) 329336
Ponte-Castañeda, P., Willis, J.-R., The effect of spatial distribution of effective behavior of composite materials and cracked media, J. Mech. Phys. Solids 43 (1995) 19191951 CrossRef
M. Bornert, T. Bretheau, P. Gilormini, Homogénéisation en mécanique des matériaux 1, Matériaux aléatoires élastiques et milieux périodiques, Hermes Sciences Europe Ltd, 2001
Shao, J.-F., Zhou, H., Chau, T., Coupling between anisotropic damage and permeability variation in brittle rocks. Int. J. for Numerical and Analytical Methods in Geomechanics 29 (2005) 12311247
Dormieux, L., Kondo, D., Diffusive transport in disordered media, Application to the determination of the tortuosity and the permeability of cracked materials, Applied Micromechanics of Porous Media, L. Dormieux, F.-J. Ulm (eds.) CISM Courses and lectures 480 (2005) 83106
L. Dormieux, D. Kondo, F.-J. Ulm, Microporomechanics, Wiley, 2006
Shao, J.-F., Jia, Y., Kondo, D., Chiarelli, A.-S., A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions, Mechanics Materials 38 (2006) 218232 CrossRef