Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:30:25.481Z Has data issue: false hasContentIssue false

États limites et bouffées turbulentes en conduitecylindrique

Published online by Cambridge University Press:  15 September 2010

Yoann Duguet*
Affiliation:
Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI-CNRS), UPR 325, BP 133, 91403 Orsay Cedex, France School of Mathematics, University of Bristol BS8 1TW, Bristol, UK
A. P. Willis
Affiliation:
LadHyX, École Polytechnique, 91128 Palaiseau, France School of Mathematics, University of Bristol BS8 1TW, Bristol, UK
R. R. Kerswell
Affiliation:
School of Mathematics, University of Bristol BS8 1TW, Bristol, UK
*
a Auteur pour correspondance :duguet@mech.kth.se
Get access

Abstract

La transition vers la turbulence en conduite cylindrique est observée pourRe assez grand, malgre la stabilité linéaire de l’état laminaire.Expérimentalement, la transition se manifeste par le développement de boufféesturbulentes, spatialement localisées. Du côté théorique, des ondes progressives, instableset de courte longueur d’onde, ont été mises en évidence numériquement. Cette étude, quiutilise la simulation numérique directe ainsi qu’un modèle réduit, suggère lacompatibilité entre les deux approches.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Darbyshire, A.G., Mullin, T., Transition to turbulence in constant-mass-flux pipe flow, J. Fluid Mech. 289 (1995) 83 CrossRefGoogle Scholar
Duguet, Y., Pringle, C., Kerswell, R.R., Relative periodic orbits in transitional pipe flow, Phys. Fluids 20 (2008) 114102 CrossRefGoogle Scholar
Duguet, Y., Willis, A.P., Kerswell, R.R., Transition in pipe flow: the saddle structure on the boundary of turbulence, J. Fluid Mech. 613 (2008) 255274CrossRefGoogle Scholar
Faisst, H., Eckhardt, B., Travelling waves in pipe flow, Phys. Rev. Lett. 91 (2003) 224502 CrossRefGoogle Scholar
Kerswell, R.R., Recent progress in understanding the transition to turbulence in a pipe, Nonlinearity 18 (2005) R17R44CrossRefGoogle Scholar
Hof, B., van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Turbulence regeneration in pipe flow at moderate Reynolds numbers, Phys. Rev. Lett. 95 (2005) 214502 CrossRefGoogle ScholarPubMed
Lindgren, E.R., Propagation Velocity of Turbulent Slugs and Streaks in Transition Pipe Flow, Phys. Fluids 12 (1969) 418 CrossRefGoogle Scholar
Mellibovsky, F., Meseguer, A., Schneider, T.M., Eckhardt, B., Transition in localised pipe flow turbulence, Phys. Rev. Lett. 103 (2009) 054502 CrossRefGoogle Scholar
Nishi, M., Unsal, B., Durst, F., Biswas, G., Laminar-to-turbulent transition of pipe flows through puffs and slugs, J. Fluid Mech. 614 (2008) 425446CrossRefGoogle Scholar
W. Pfenniger, Transition in the inlet length of tubes at high Reynolds numbers, Boundary Layer and Flow Control, in: G.V. Lachman (éd.), 1961, Vol. 970
Poiseuille, J.L.M., Recherches experimentales sur le mouvement des liquides dans les tubes de très petits diamètres, C.R. Acad. Sci. 11 (1840) 961 Google Scholar
Pringle, C.C.T., Kerswell, R.R., Asymmetric, helical and mirror-symmetric travelling waves in pipe flow, Phys. Rev. Lett. 99 (2007) 074502 CrossRefGoogle Scholar
Pringle, C.C.T., Duguet, Y., Kerswell, R.R., Highly-symmetric travelling waves in pipe flow, Phil. Trans. Roy. Soc. A 367 (2009) 457472CrossRefGoogle Scholar
Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels, Phil. Trans. Roy. Soc. 174 (1883) 935982CrossRefGoogle Scholar
P. Schmid, D. Henningson, Stability and transition in shear flows, Springer, 2001
Schneider, T.M., Eckhardt, B., Yorke, J.A., Turbulence transition and the edge of chaos in pipe flow, Phys. Rev. Lett. 99 (2007) 034502 CrossRefGoogle Scholar
Smith, F.T., Bodonyi, R.J., Amplitude-dependent neutral modes in the Hagen-Poiseuille flow through a circular pipe, Proc. R. Soc. Lond. A 384 (1982) 463 CrossRefGoogle Scholar
Kerswell, R.R., Tutty, O.R., Recurrence of Travelling Waves in Transitional Pipe Flow, J. Fluid Mech. 584 (2007) 69102CrossRefGoogle Scholar
Viswanath, D., The critical layer in pipe flow at high Reynolds number, Phil. Trans. Royal Soc. 367 (2009) 561576CrossRefGoogle Scholar
Waleffe, F., On the self-sustaining process in shear flows, Phys. Fluids 9 (1997) 883900CrossRefGoogle Scholar
Wedin, H., Kerswell, R.R., Exact coherent structures in pipe flow: travelling wave solutions, J. Fluid Mech. 508 (2004) 333371CrossRefGoogle Scholar
Willis, A.P., Kerswell, R.R., Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarisation and localised “edge” states, J. Fluid Mech. 619 (2009) 213233CrossRefGoogle Scholar
Willis, A.P., Peixinho, J., Kerswell, R.R., Mullin, T., Experimental and theoretical progress in pipe flow transition, Phil. Trans. Roy. Soc. A 366 (2009) 26712684CrossRefGoogle ScholarPubMed
Wygnanski, I.J., Champagne, F.H., On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug, J. Fluid Mech. 59 (1973) 281351CrossRefGoogle Scholar