Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:28:49.837Z Has data issue: false hasContentIssue false

Cost optimization of reliability testing by a bayesianapproach

Published online by Cambridge University Press:  28 August 2014

S. Beleulmi
Affiliation:
Laboratoire ingénierie des transports et environnement Département de Génie Mécanique Faculté des sciences de la technologie Université Constantine 1 Constantine, Algeria
A. Bellaouar
Affiliation:
Laboratoire ingénierie des transports et environnement, Faculté des sciences de la technologie Université Constantine 1Constantine, Algeria
M. Lachi
Affiliation:
Laboratoire GRESPI, UFR Sciences, Université de Reims Champagne Ardenne, Reims, France
Get access

Abstract

The Bayesian approach is a stochastic method, allowing to establish trend studies on thebehavior of materials between two periods or after a break in the life of these materials.It naturally integrates the inclusion of the information partially uncertain to support inmodeling problem. The method is therefore particularly suitable for the analysis of thereliability tests, especially for equipment and organs whose different tests are costly.Bayesian techniques are used to reduce the size of estimation tests, improving theevaluation of the parameters of product reliability by the integration of the past (dataavailable on the product concerned) and process, the case “zero” failure observed,difficult to treat with conventional statistical approach. This study will concern thereduction in the number of tests on electronic or mechanical components installed in amechanical lift knowing their a priori behavior in order to determine their a posterioribehavior.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.C. Li, F.M. Chang, K.C. Chen, Building Reliability Growth Model Using Sequential Experiments and the Bayesian Theorem for Small Datasets, Expert Systems with Applications (2009), DOI: 10.1016/j.eswa.2009.10.001
Maurizio, G., Gianpaolo, P., Bayesian Analysis Of Repairable Syst. Showing A Bounded Failure Intensity, Reliab. Eng. Syst. Safe. 91 (2006) 828838 Google Scholar
Makota, A., Bayesian Analysis For Results Of Fatigue Test Using Full-Scale Models To Obtain The Accurate Failure Probabilities Of The Shinkansen Vehicle Axle, Reliab. Eng. Syst. Safe. 75 (2002) 32133 Google Scholar
F. Corset, Aide à l’optimisation de maintenance à partir de réseaux bayésiens et fiabilité dans un contexte doublement censuré. Thèse de doctorat, Université Joseph Fourrier, Grenoble 1, 2003
A. Muller, Contribution à la maintenance prévisionnelle des systèmes de production par la formalisation d’un processus de pronostic, Thèse de doctorat, Université Henri Poincaré, Nancy 1, 2005
P. Weber, L. Jouffe, Reliability modeling with Dynamic Bayesian Networks. 5th IFAC Sysmposium on Fault Detection, Supervision and Safety of Technical Processes, D.C. Washington, USA, 2003
C. Robert, L’analyse statistique bayésienne. Edition Economica, 1992
C.P. Robert, The Bayesian choice. Ed. Springer, 2001
P. Congdon, Bayesian statistical modelling. Ed. Wiley, 2001
J. Ibrahim, M. Chen, D. Sinha, Bayesian survival analysis. Ed. Springer, 2001
J. Ringler, Utilisation des techniques bayésiennes dans le cas de système complexe. Revue de Statistique Appliquée XXVII (1979)
H. Procaccia, P. Morilhat, Fiabilité des structures des installations industrielles. Ed. Eyrolles, (1996)
P. Gondran, Fiabilité des systèmes, Eyrolles, 1980
W. Nelson, Accelerated Testing: Statistical Models, Test Plans and Data Analysis, Eds. Wiley Series in Probability and Mathematical Statistics, 1990
P. O’Connor, Testing for reliability, Qual. Reliab. Eng. Int. 19 (2003) 73–84
H. Caruso, A. Dasgupta, A fundamental overview of accelerated testing analytical models. In IEEE Proceedings Annual Reliability and Maintainability Symposium, Tutorial notes, 1998
A. Vassilious, A. Mettas, Understanding accelerated life testing analysis. In IEEE Proceedings Annual Reliability and Maintainability Symposium, Tutorial notes, USA, 2001
H. Procaccia, L. Piepszownik, C. Clarotti, Fiabilité des équipements et théorie de la décision statistique fréquentielle et bayésienne. Ed. Eyrolles, 1992
Ross, T.D., Accurate confidence intervals for binomial proportion Poisson rate estimation, Comput. Biol. Med. 33 (2003) 509531 CrossRefGoogle ScholarPubMed
Military Handbook-Reliability Prediction of Electronic Equipment. United States Department Of Defense, notice 2. [MIL-HDBK-217 F], 1995