Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T11:42:22.925Z Has data issue: false hasContentIssue false

VARIATION ON A THEOREM BY CARATHÉODORY

Published online by Cambridge University Press:  10 December 2009

Leonard J. Schulman*
Affiliation:
Caltech, MC305-16, Pasadena, CA 91125, U.S.A. (email: schulman@caltech.edu)
Get access

Abstract

Carathéodory’s theorem on small witnesses for convex hulls of sets is shown to have a natural analogue for finitely supported measures. Contrast is drawn with the much larger witnesses required for multisets, as shown by Bárány and Perles.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bárány, I. and Larman, D. G., Convex bodies, economic cap coverings, random polytopes. Mathematika 35 (1988), 274291.CrossRefGoogle Scholar
[2]Bárány, I. and Perles, M., The Caratheodory number for the k-core. Combinatorica 10(2) (1990), 185194.CrossRefGoogle Scholar
[3]Blaschke, W., Vorlesungen über Differentialgeometrie II, Springer (Berlin, 1923).Google Scholar
[4]Carathéodory, C., Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64 (1907), 95115.CrossRefGoogle Scholar
[5]Carathéodory, C., Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 193217.CrossRefGoogle Scholar
[6]Danzer, L., Grünbaum, B. and Klee, V., Helly’s Theorem and its Relatives (Proceedings Symposia in Pure Mathematics, Volume VII Convexity), American Mathematical Society (Providence, RI, 1963), 101181.Google Scholar
[7]Dupin, C., Application de Géometrie et de Méchanique à la Marine, aux Ponts et Chaussées (1822).Google Scholar
[8]Leichtweiss, K., Über ein Formel Blaschkes zur Affinoberfläche. Studia Sci. Math. Hungar. 21 (1986), 453474.Google Scholar
[9]Matoušek, J., Lectures on Discrete Geometry, Springer (Berlin, 2002).CrossRefGoogle Scholar
[10]Rado, R., A theorem on general measure. J. London Math. Soc. 21 (1946), 291300.CrossRefGoogle Scholar
[11]Schutt, C. and Werner, E., The convex floating body. Math. Scand. 66 (1990), 275290.CrossRefGoogle Scholar
[12]Stancu, A., The floating body problem. Bull. London Math. Soc. 38 (2006), 839846.CrossRefGoogle Scholar