Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T07:54:30.093Z Has data issue: false hasContentIssue false

A PAUCITY ESTIMATE RELATED TO NEWTON SUMS OF ODD DEGREE

Published online by Cambridge University Press:  27 March 2012

Jörg Brüdern
Affiliation:
Mathematisches Institut, Bunsenstrasse 3–5, D 37073 Göttingen, Germany (email: bruedern@uni-math.gwdg.de)
Olivier Robert
Affiliation:
Institut Camille Jordan CNRS UMR 5208, Université de Lyon and Université de Saint-Etienne, 23, rue du Dr P. Michelon, F-42000, Saint-Etienne, France (email: olivier.robert@univ-st-etienne.fr)
Get access

Abstract

Paucity is established for a system of diagonal diophantine equations, in which the degrees are the odd numbers in ascending order.

Type
Research Article
Copyright
Copyright © University College London 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]de la Bretèche, R., Répartition des points rationnels sur la cubique de Segre. Proc. Lond. Math. Soc. (3) 95 (2007), 69155.CrossRefGoogle Scholar
[2]Borchardt, C. W., Über eine Eigenschaft der Potenzsummen ungerader Ordnung. In Monatsberichte der Berliner Akademie, (1857), 24–34.Google Scholar
[3]Choudhry, A., The Diophantine system ∑ 41x ri=∑ 41y ri,r=1,3,5. Bull. Calcutta Math. Soc. 83 (1991), 8586.Google Scholar
[4]Foulkes, H. O., Theorems of Kakeya and Pólya on power-sums. Math. Z. 65 (1956), 345352.CrossRefGoogle Scholar
[5]Perron, O., Über die Abhängigkeit von Potenzsummen und einen Satz von Pólya. Math. Z. 63 (1955), 1930.CrossRefGoogle Scholar
[6]Perron, O., Über Potenzsummen. Math. Z. 64 (1956), 103114.CrossRefGoogle Scholar
[7]Robert, O., An analogue of van der Corput’s A 5-process for exponential sums. Mathematika 49 (2002), 167183.CrossRefGoogle Scholar
[8]Vaughan, R. C. and Wooley, T. D., A certain nonary cubic form and related equations. Duke Math. J. 80(3) (1995), 669735.CrossRefGoogle Scholar
[9]Vaughan, R. C. and Wooley, T. D., A special case of Vinogradov’s mean value theorem. Acta Arith. 79 (1997), 193204.CrossRefGoogle Scholar