Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:38:40.163Z Has data issue: false hasContentIssue false

J-fields generated by roots of cyclotomic integers

Published online by Cambridge University Press:  26 February 2010

Veikko Ennola
Affiliation:
Department of Mathematics, University of Turku, SF–2O50O Turku 50, Finland
Get access

Extract

Let β be a cyclotomic integer. The question of the solvability of the diophantine equation xq = β in a cyclotomic field has been considered by many authors (see [4], [5], [12]). Some of the methods used in these investigations also work in J-fields. (As to the definition, see Section 2.) It is well known that J-fields share some important properties with cyclotomic fields. It is also easy to give interesting examples where the solution belongs to a. J-field but not to a cyclotomic field. It seems therefore to be of some importance to consider in general the solvability of xq = β in a. J-field, or in other words whether β1/q generates a. J-field.

Type
Research Article
Copyright
Copyright © University College London 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baumert, L. D.. Cyclic difference sets, Lecture notes in Math., 182 (Springer-Verlag, Berlin-Heidelberg-New York, 1971).Google Scholar
2.Cassels, J. W. S.. “On a conjecture of R. M. Robinson about sums of roots of unity”, J. reine angew. Math., 238 (1969), 112131.Google Scholar
3.Ennola, V.. “Solution of a cyclotomic diophantine equation”, J. reine angew. Math., 272 (1975), 7391.Google Scholar
4.Ennola, V.. “A note on a cyclotomic diophantine equation”, Ada Arith., 28 (1975), 157159.CrossRefGoogle Scholar
5.Grossman, E. H.. “Sums of roots of unity in cyclotomic fields”, J. Number Th., 9 (1977), 321329.Google Scholar
6.Györy., K.Sur une classe des corps de nombres algébriques et ses applications”, Publ. Math. (Debrecen), 22 (1975), 151175.Google Scholar
7.Hall, M. Jr. Combinatorial theory (Blaisdell Publ. Co., Waltham-Toronto-London, 1967).Google Scholar
8.Hasse, H.. “Uber eine diophantische Gleichung von Ramanujan-Nagell und ihre Verallgemeinerung”, Nagoya Math. J., 27 (1966), 77102.CrossRefGoogle Scholar
9.Ljunggren, W.. “Ober die Gleichungen 1 + Dx2 = 2yn und 1 + Dx2 = 4yn”, Norske Vid. Selsk. Forh., 15 (1942), 115118.Google Scholar
10.Ljunggren, W.. “On the diophantine equation y 2 - k = x 3”, Ada Arith., 8 (1963), 451463.Google Scholar
11.Ljunggren, W.. “On the diophantine equation Cx 2 + D = yn”, Pacific J. Math., 14 (1964), 585596.CrossRefGoogle Scholar
12.Loxton, J. H.. “On a cyclotomic diophantine equation”, J. reine angew. Math., 270 (1974), 164168.Google Scholar
13.Mordell, L. J.. Diophantine equations (Academic Press, London-New York, 1969).Google Scholar
14.Nagell, T.. “Sur l'impossibilite de l'équation indétermineé (x 5y 5)/(xy) = 5z2”, Norsk. Mat. Tidsskr., 2 (1920), 5154.Google Scholar
15.Nagell, T.. “Sur l'équation indétermineé (xn - l)/(x - 1) = y2”, Norsk Mat. For. Skr. Ser. I., Nr. 3 (1921).Google Scholar
16.Nagell, T.. “Résultats nouveaux de Panalyse indeterminee I”, Norsk Mat. For. Skr. Ser. I., Nr. 8 (1922).Google Scholar
17.Nagell, T.. “Sur Pimpossibilité de quelques équations à deux indétermineés”, Norsk Mat. For. Skr. Ser. I., Nr. 13 (1923).Google Scholar
18.Newman, M.. “Nonnegative sums of roots of unity”, J. Res. Nat. Bur. Stand. B, 80 (1976), 14.Google Scholar
19.Schinzel, A. and Tijdeman, R.. “On the equation ym = P(x)”, Ada Arith., 31 (1976), 199204.CrossRefGoogle Scholar
20.Stroeker, R. J.. “On the diophantine equation x 3 - Dy 2 = 1”, Nieuw Arch. Wisk.(3), 24(1976), 231255.Google Scholar
21.Zagier, D.. “The first 50 million prime numbers”, Math. Intelligencer, 0 (1977), 719.Google Scholar