Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T00:03:01.080Z Has data issue: false hasContentIssue false

DIFFERENTIAL GERSTENHABER–BATALIN–VILKOVISKY ALGEBRAS FOR CALABI–YAU HYPERSURFACE COMPLEMENTS

Published online by Cambridge University Press:  07 June 2018

Dokyoung Kim
Affiliation:
Department of Mathematics, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea email bigh2000@postech.ac.kr
Yesule Kim
Affiliation:
Department of Mathematics, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea email yesule@postech.ac.kr
Jeehoon Park
Affiliation:
Department of Mathematics, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea email jeehoonpark@postech.ac.kr
Get access

Abstract

Barannikov and Kontsevich [Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. IMRN1998(4) (1998), 201–215], constructed a DGBV (differential Gerstenhaber–Batalin–Vilkovisky) algebra $\mathbf{t}$ for a compact smooth Calabi–Yau complex manifold $M$ of dimension $m$, which gives rise to the $B$-side formal Frobenius manifold structure in the homological mirror symmetry conjecture. The cohomology of the DGBV algebra $\mathbf{t}$ is isomorphic to the total singular cohomology $H^{\bullet }(M)=\bigoplus _{k=0}^{2m}H^{k}(M,\mathbb{C})$ of $M$. If $M=X_{G}(\mathbb{C})$, where $X_{G}$ is the hypersurface defined by a homogeneous polynomial $G(\text{}\underline{x})$ in the projective space $\mathbb{P}^{n}$, then we give a purely algorithmic construction of a DGBV algebra ${\mathcal{A}}_{U}$, which computes the primitive part $\bigoplus _{k=0}^{m}\mathbf{PH}^{k}$ of the middle-dimensional cohomology $\bigoplus _{k=0}^{m}H^{k}(M,\mathbb{C})$, using the de Rham cohomology of the hypersurface complement $U_{G}:=\mathbb{P}^{n}\setminus X_{G}$ and the residue isomorphism from $H_{\text{dR}}^{k}(U_{G}/\mathbb{C})$ to $\mathbf{PH}^{k}$. We observe that the DGBV algebra ${\mathcal{A}}_{U}$ still makes sense even for a singular projective Calabi–Yau hypersurface, i.e. ${\mathcal{A}}_{U}$ computes $\bigoplus _{k=0}^{m}H_{\text{dR}}^{k}(U_{G}/\mathbb{C})$ even for a singular $X_{G}$. Moreover, we give a precise relationship between ${\mathcal{A}}_{U}$ and $\mathbf{t}$ when $X_{G}$ is smooth in $\mathbf{P}^{n}$.

Type
Research Article
Copyright
Copyright © University College London 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barannikov, S. and Kontsevich, M., Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. IMRN 1998(4) 1998, 201215.Google Scholar
Cox, D. A. and Katz, S., Mirror Symmetry and Algebraic Geometry (Mathematical Surveys and Monographs 68 ), American Mathematical Society (Providence, RI, 1999).Google Scholar
Deligne, P., Theorie de Hodge II, III. Publ. Math. Inst. Hautes Études Sci. 40 1971, 558; Publ. Math. Inst. Hautes Études Sci. 44 (1974), 5–77.Google Scholar
Deligne, P. and Dimca, A., Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières. Ann. Sci. Éc. Norm. Supér. (4) 23 1990, 645656.Google Scholar
Dimca, A., On the Milnor fibrations of weighted homogeneous polynomials. Compos. Math. 76(1–2) 1990, 1947.Google Scholar
Dimca, A., Singularities and Topology of Hypersurfaces (Universitext), Springer (New York, 1992).Google Scholar
Dimca, A., Residues and cohomology of complete intersections. Duke Math. J. 78(1) 1995, 89100.Google Scholar
Griffiths, P. A., On the periods of certain rational integrals. I, II. Ann. of Math. (2) 90 1969, 460495; Ann. of Math. (2) 90 (1969), 496–541.Google Scholar
Li, C., Li, S. and Saito, K., Primitive forms via polyvector fields. Preprint, 2013, arXiv:1311.1659 [math.AG].Google Scholar
Park, J.-S. and Park, J., Enhanced homotopy theory for period integrals of smooth projective hypersurfaces. Commun. Number Theory Phys. 10(2) 2016, 235337.Google Scholar
Saito, K., Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) 1981, 775792.Google Scholar
Witten, E., Phases of N = 2 theories in two dimensions. Nuclear Phys. B 403(1–2) 1993, 159222.Google Scholar